Using condition functions (predicates), we can filter away uninteresting data and keep only interesting data. In physics codes, this process is often called cutting on a predicate.
// the naming shortcut (alias) saves some keystrokes: cern.jet.math.Functions F = cern.jet.math.Functions.functions; double[] v1 = {0, 1, 2, 3}; DoubleMatrix1D matrix = new DenseDoubleMatrix1D(v1); // 0 1 2 3 // view all cells for which holds: lower <= value <= upper final double lower = 0.2; final double upper = 2.5 matrix.viewSelection(F.isBetween(lower, upper)); // --> 1 2 // equivalent, but less concise: matrix.viewSelection( new DoubleProcedure() { public final boolean apply(double a) { return lower <= a && a <= upper; } } ); // --> 1 2
// view all cells with even value matrix.viewSelection( new DoubleProcedure() { public final boolean apply(double a) { return a % 2 == 0; } } ); // --> 0 2 // sum of all cells for which holds: lower <= value <= upper double sum = matrix.viewSelection(F.isBetween(lower, upper)).zSum(); // --> 3
// equivalent: double sum = matrix.viewSelection(F.isBetween(lower, upper)).aggregate(F.plus,F.identity);
// view all rows which have a value < threshold in the first column (representing "age") final double threshold = 16; matrix.viewSelection( new DoubleMatrix1DProcedure() { public final boolean apply(DoubleMatrix1D m) { return m.get(0) < threshold; } } ); // view all rows with RMS < threshold.
// the RMS (Root-Mean-Square) is a measure of the average "size" of the elements of a data sequence. final double threshold = 0.5; matrix.viewSelection( new DoubleMatrix1DProcedure() { public final boolean apply(DoubleMatrix1D m) { return Math.sqrt(m.aggregate(F.plus,F.square) / m.size()) < threshold; } } );
// view all slices which have an aggregate sum > 1000 matrix.viewSelection( new DoubleMatrix2DProcedure() { public final boolean apply(DoubleMatrix2D m) { return m.zSum() > 1000; } } );