Science

Introduction

- LHC proton-proton collider (CERN) currently operating at record collision energy ($\sqrt{ }=7 \mathrm{TeV}$)
- Designed to reach peak collision energy of 14 TeV

ATLAS detector is largest detector of LHC

- SM is successful but incomplete description of Model (SM) lescription of particles \& their Many theories beyond SM predi
with mass on the scale of TeV
with mass on the scale of TeV
- Supersymmetry, Extra-Dimensions, \& others
- Supersymmetry, Extra-Dimensions, \& others particle (top quark, $\sim 173 \mathrm{GeV}$)
particle (top quark, $\sim 173 \mathrm{GeV}$)
General feature of neutral TeV-scale particle " X " is primary decay channel through fully hadronic top-pair production..

$$
X \rightarrow t \bar{t} \rightarrow(W+b)(W-\bar{b}) \rightarrow(q \bar{q} b)(q \bar{q} \bar{b})
$$

- Final state: 6 jets, one from each quark
- In the case of decay from initial TeV-scale particle, light decay-- Results in jet-overlap at detector (see fig. 1)
- Decay will be detected as a pair of jets rather than six jets - Jets will look like decay due to less exotic QCD hadronization processes
Gackround method of separating signal composite jets from background QCD jets.

Fig. 1. Schematic of a hypothetical Z^{\prime} in its rest-frame decaying by a toppair to 6 jets which appear as 2 .

Proposal

We propose a method using global jet-shape variables as a means of differentiating signal from background \& improving signal-to-background ratio (SBR).

- DOES NOT use jet sub-structure
- NO cluster analysis

Treat each reconstructed tanalysis

- Define several shape-variables based on the idea of an ellipse - Axis \& semi-axis lengths
- Eccentricities
- Calculate several shape-variables for each jet to determine if it
is a QCD mono-jet or a multi-jet of interest

Acknowledgments

Thanks to ANL-SRP for making this research possible. Thanks also to ANL-ASC of the ANL-HEP division for hosting this research. Specific thanks to Jimmy Proudfoot, Rik Yoshida, \& especially to Sergei Chekanov.

Contact

Dr. Sergei Chekanov
ANL HEP-division
9700 S . Cass Ave
9700 S. Cass Ave.
Argonne, IL 60439
Argonne, IL 60439 nep.anl: chakanau@

Tortheastern Univ. (Physics Dept) 111 Dana Research Center Boston, MA 02115 Email: levy.c@husky.neu.edu

Fig. 2. Idealized jet in arbitrary phase-space Black/Red lines are major/minor axis-lines. Green lines define quadrants. Blue/Red points are semi-
plane centers. Green points are quadrant centers.

Shape-Variables Method

- Constituent points (hadrons) of each reconstructed jet are mapped onto eta-phi space... - Each point has position in eta (pseudorapidity) and phi (azimuth) as well as a weight (energy)

Need to define variables of a classical conic-section out of a composite object of discrete

 points. Several Steps.- 1) Find geometric (i.e. unweighted) mean of all points in jet. This is the jet-center 2) Perform unweighted linear-regression to find the major axis-line of the ellipse. 3) Minor axis-line is defined as perpendicular to the major, through the jet-center. - With axes defined, need to calculate lengths. 2 main methods of doing this...
- Quadrants-
-4) Rotate major/minor axis-lines by 45 degrees to define 4 quadrants, each containing 1 semiaxis.
Find weighted mean of each quadrant (independently of points in othe quadrants). This is quadrant center
ength of axis is distance - Semi-planes-
- 4) Let axis-lines divide phase-space into 2 sets of 2 semi-planes; each point is et axis-lines divide phase-space into 2 sets of 2 semi-planes; each
above or below the major line $\&$ above or below the minor line.
-5) Find weighted mean of each semi-plane (Weighted means above/below the above/below the major axis-line define endpoints of minor semiax

The Variables...

- Major length (distance between major semiaxis centers) - Minor length (distance between minor semiaxis centers Eccentricity $=1$ - (major length $/$ minor length)
\bullet Range [0,1]. 0 =perfect circle. $1=$ infinitely elongated (line) center and the global jet-center)
- Major eccentricity = 1 - (semimajor $1 /$ semimajor 2) - Like eccentricity. How 'skewed' ellipse is to one side Minor eccentricity $=1-$ (semiminor $1 /$ semiminor 2) Absolute length (distance between most extreme jet constituents after projection onto major axis-line)
Absolute width (distance between most extreme jet constituents after projection onto minor axis-line)

Each variable can be described by either

- the semi-plane method or the quadrant method Proper eta-phi distance or by distance after orthogonal projection of centers onto the axis-lines
variables, there are over 20 identified shape-variables

Monte-Carlo Results

produced each fo

- QCD background (including top-quarks)

2 TeV and 3 TeV signal Z^{\prime} (decaying through fully hadronic top-pairs)

- C++ program calculated shape-variables for $1^{\text {st }}$ and $2^{\text {nd }}$ leading p jets from each even
- Only jets with p_{τ} above 500 GeV accepted
- Jets reconstructed by anti- k_{T} algorithm with cone size $R=0.6$

QCD jet-mass peaks at $\sim 40 \mathrm{GeV}$, signal jet-mass peaks at top-quark mas First apply a jet-mass cut (only jets with invariant mass above a certain value accepted Uirst apply a je-mass cut (only jets with
Upper bound on mass always 250 GeV)

- Look at resulting distributions (fig. 3) to apply shape-variable cuts
- Pick several shape-variables which discriminate signal \& background well, apply rejection

Cuts

- Calculate rejection \& relative rejection of cuts, see if improved (table 1
- Rejection factor is number of total events divided by number of events accepted after cuts - Relative rejection factor is background rejection divided by signal rejection

Relative Rejection Factors: 2 TeV					Table 1. Rejection \& relative rejection
Mass Cut	Just Mass	≥ 5 variables	≥ 6 variables	≥ 7 variables	
Jet1 150 GeV	177.3/2.1	444.2 / 4.0	$584.4 / 5.5$	925.3/9.0	cuts. Nu
Jet2 130GeV	=84.4	=111.1	=106.3	=102.8	variables
Jet1 140 GeV Jet2 $\mathbf{1 4 0 G e V}$	$\begin{array}{r} 185.8 / 2.2 \\ =84.5 \end{array}$	$\begin{aligned} & 545.0 / 4.2 \\ &=129.8 \end{aligned}$	$746.5 / 6.0$	$\begin{gathered} 1388.0 / 9.9 \\ =140.2 \end{gathered}$	variable cuts a jet must pass to be accepted
	b) Relative	Rejection Factors	rs: 3 TeV		Numerators are Q
Mass Cut	Just Mass	≥ 5 variables	≥ 6 variables	≥ 7 variables	nomina
Jet1 150 GeV	127.3/1.7	260.9/2.3	319.5/2.7	$460.5 / 3.4$	signal rejection factors. Relative
Jet1 140 GeV	133.3/1.7	292.7 / 2.3	$372.8 / 2.7$	$602.2 / 3.4$	rejection factor is factor of signal-to
Jet2 140 GeV	=78.4	$=127.3$	=138.1	=177.1	d

Fig. 3. 24 Variables for the leading-p jet after a jet-mass cut at 140 GeV . Filled histogram is QCD background, Solid line is 2 TeV signal, dashed line is 3 T TV signal. Vertical lines \& red arrows denote the rejection areas for 9 variables. Length-variable units are in eta-phi distance units. Eccentricity-variables are unitless. Prefix "na_" signifies semi-plane
method, Suffix "_meth2" signifies projection onto axis-lines. Absence of prefix/suffix signifies the other method.
$\begin{array}{llllll}\text { Jet1 } 150 \mathrm{GeV} & 127.3 / 1.7 & 260.9 / 2.3 & 319.5 / 2.7 & 460.5 / 3.4 \\ \text { Jet2 } 130 \mathrm{GeV} & =74.9 & =113.4 & =118.3 & =135.4\end{array}$

the cut

Fig. 4. Jet1-Jet2 invariant mass histograms, before
and after cuts. Mass cut at 150 GeV, ≥ 7 shape-
variables. "Inclusive pP " is background
"(cuts)" is
distribution after distribution after
cuts. Relative rejection factors for
 are normalized by requiring equal
numbers of events.

Conclusions

We have outlined a jet-shape-variables method for separating multi-jets from mono-jets. use the shape-variables method to achieve Signal-to-background improvement factors of well over 100. Mass cuts coupled with several shape-variable cuts produced the best rejection Relative rejections of 130 for a $2 \mathrm{TeV} \mathrm{Z}^{\prime}$ and
over 175 for a $3 \mathrm{TeV} \mathrm{Z}^{\prime}$ are possible while over 175 for a $3 \mathrm{TeV} Z$ are possible while
maintaining low signal rejection. Relative rejection factors of well over 200 are possible with higher signal rejection. We conclude tha the shape-variables method may be useful in the search for TeV-scale particles.
Next steps include full-detector simulation method may then be applied to data-analysis, more data becomes available.

