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Abstract

The ATLAS experiment, which is currently operating at the Large Hadron Collider (LHC) at 

CERN, constantly requires faster and more efficient methods for analyzing the data which is being 

produced and stored. The implementation of a general search which analyzes all stored data for new 

particles would be extremely useful as a method for preliminary analysis. The first goal of this project 

was to understand the applicability of various analytical functions to the description of background of 

invariant masses of two or more particles (jets). The second goal was to develop a technique for 

detecting statistically significant peaks without any a priori assumptions on the shape of the 

background distribution. To achieve the second goal, Python and ROOT were used to develop program 

NPPFinder to detect possible peaks in invariant mass distributions and then calculate each peak's 

statistical significance using numerical methods. These statistical significances are then graphed in 

order to observe any important values which should be investigated further. The program has been run 

successfully over 1.0 fb-1 of ATLAS data. Overall, this method shows great promise in providing a 

simple, unique, and effective approach for quick preliminary analysis of ATLAS data.

Introduction

The European Organization for Nuclear Research (CERN) in Geneva is home to the Large 

Hadron Collider (LHC), which performs experiments in the 7 TeV energy range with plans for even 

higher energies in the future. The LHC is used to accelerate both protons and heavy ions to over 99% 

the speed of light and then allow them to collide at certain points along the structure's beam line. At one 

of these points located in Meyrin, Switzerland is housed the ATLAS detector, which encircled the beam 

line in order to capture these events. For each of the almost 1 billion events produced per second, 

ATLAS detects information such as position, energy, and transverse momentum on every particle 

produced by the collision. Since every second of raw data recorded requires about 23 petabytes of 

storage space, a number of hardware and software 'triggers' are used to store only interesting and 



important data. However, even after this selection process,  about one petabyte of storage space per 

year is needed to record all of the data collected at the LHC. This information is made available for 

further analysis by researchers around the world.

Thanks to the work of a previous summer student here at Argonne, program InvMass has 

already been created in order to access this data and convert it into a more useful histogram format. 

Each histogram is classified according to the type of particles or structures produced in each event and 

contains information on the number of events produced for each value of the invariant mass of the 

collision. This classification results in hundreds of histograms, each of which contains potentially 

interesting information which must be explored.

For this reason, the ATLAS experiment is in constant need of faster and more efficient methods 

of analysis which can quickly alert researchers about important segments of the data which require 

further study. One such method is a general peak search algorithm, which runs over all data channels to 

identify possible peaks which are a sign of new physical phenomenon or particles. The general method 

for a peak search algorithm is to construct a background for the shape of each histogram and then 

compare the actual data to this background in search of significant deviations from the background. 

The goal of this project has been to develop such an algorithm and to test it on the latest data collected 

by the ATLAS detector. This report first discusses the background behind some of the attempted 

approaches and why they ultimately were unsuitable for the task at hand. It then goes on to present the 

settled upon method and discuss its merits and shortcomings.

Analytical Curve Fitting

One method for constructing a background for a given histogram uses the method of analytical 

curve fitting to fit a predefined, analytical function to the data using a fitting program. This was the 

initially chosen method used to develop the algorithm, due to it's widespread use in constructing 

backgrounds for individual histograms of ATLAS data. However, after numerous attempts at fitting 



histograms in this way it became obvious that it is extremely difficult to find analytical function 

capable of fitting each histogram over its entire range (it is in fact doubtful whether or not such a 

function exists). Figure 1 is taken from a recent ATLAS report which shows a well fitted background. 

However, this background is clearly fit over a partial range of the data. Figure 2 is a set of plots taken 

from the output of the initial analytical peak search algorithm, which shows how a function may 

partially fit the data but deviate significantly outside of a certain range. For this reason it was decided 

that analytical curve fitting would not be acceptable for a general peak search algorithm, and further 

methods were investigated.

Non-Parametric Curve Smoothing

The next method investigated was that of non-parametric curve smoothing. When dealing with 

peak searches, it is most important to generate a good background for the given data. The original data 

can then be compared to the background in order to locate any possible peaks, and their statistical 

significance. Non-parametric curve smoothing seemed to provide a quick and easy method for 

smoothing out a given set of data points and therefore creating a usable background. The ROOT data 

analysis framework already provides a number of types of data smoothers including SmoothSuper and 

SmoothLowess, the latter of which was developed rather recently by Cleveland [4]. For the purposes of 

this project, SmoothLowess was chosen because of its ability to extrapolate data points to areas where 

data was not present before, which is extremely useful when generating a flat background for a peak. 

SmoothLowess was run over a number of different ATLAS histograms in an attempt to generate a 

reasonable background for the data. It should be noted that for testing purposes, a fake statistically 

significant peak was introduced into the histogram along with the original data. After numerous 

attempts it became clear that SmoothLowess was far too sensitive to peaks to be of any use for 

background generation, as shown in Figure 3. Using SmoothLowess, it proved impossible to generate a 

background that was flat enough compared to the peak, and the method was therefore abandoned.



Figure 1: ATLAS fit for Dijet mass distribution [1]



Figure 2: Plots for inv_JetJet histogram created using various fit functions

Dijet Function [3] ATLAS Dijet Function [1]

ATLAS note function [2] CMS function [5]



Figure 3: Plot of SmoothLowess applied to inv_JetJet histogram



Figure 4: Illustration of NPPFinder algorithm



Non-parametric Analysis Method: NPPFinder

Due to the problems with the previous two approaches, it became clear that a novel approach 

was necessary to accurately detect possible peaks in the background spectrum. For this reason, the 

program Non Parametric Peak Finder (NPPFinder) was developed using a numerical, iterative 

approach and taking into account statistical uncertainties. In short, NPPFinder iterates through any 

given histogram and, using only data from the histogram and one input sensitivity parameter, 

determines the location and statistical significance of any possible peaks. Figure 4 is helpful for 

visualizing the approach, which is now outlined. For each point i in the histogram, the derivative αi 

between points i and i+1 is found taking into account statistical uncertainties. This is done by 

calculating the slope between two points with the error bars taken into account. If point i+1 is lower 

than point i, the upper error is used, while if point i+1 is higher than point i, the lower error bar is used. 

This process is shown in Figure 4 and can be summarized by the equation

i=
 y i1±dyi1− y i

x i1−xi

where dy i1 is the upper or lower uncertainty in y. The derivatives are then averaged up to some 

point N. This can be summarized by the equation

N=
1
N
∑
i=0

N

i

where αi is the value of the first derivative between points i and i+1 and N is the total number of points 

so far. While this occurs, NPPFinder also checks whether d i1 and d i2 , the changes in i1

and i2 respectively, are greater than  , where   is a user defined free sensitivity 

parameter. This can be summarized by the conditions

d N 1 N

d N 2 N

When this condition is true, NPPFinder registers a possible peak and begins classifying the following 



points as part of the peak. This continues until d i1 and d i2 are both less than zero, which 

signifies the maximum of the peak has been reached. This can be summarized by the conditions

d N10
d N20

When this condition is met, NPPFinder exits the peak and adds an equal number of points as there were 

going up the peak to the end of the peak (since most peaks are symmetrical).

After all possible peaks have been detected, NPPFinder then iterates through the list of possible 

peaks in order to form a background for each peak.  This is achieved by performing a linear regression 

of points between the first and last points in the peak. If P1(x1, y1) and P2(x2, y2) are the first and last 

points in a peak respectively, then the slope between them can be written as

m=
 y2dy2− y1dy1

x2−x1

where dy1 and dy2 are the statistical uncertainties in y1 and y2 . Here the statistical 

uncertainties are added instead of subtracted in order to always be on the conservative side for any 

given peak. The linear constant can be found by

b= y1dy1−m x1

or

b= y2dy2−m x2

Once m and b have been found for a specific peak, a linear regression line for the peak can be found by 

calculating new y values for each point i in the peak according to the linear equation

y i=m x ib

NPPFinder then stores these new points as the background for the given peak.

Finally, NPPFinder uses the background points to calculate the statistical significance of each 

peak in a given histogram. This is done by summing the residuals of the original points in a peak with 

respect to the calculated background points, and then dividing this value by it's own square root. The 



residuals, ri, for each point i taking into account uncertainties are given by the equation

r i= y i peak−dyi peak− y ibackground 

The sum of all values of ri for a given peak can be found by

S=∑
n=1

N

r i

where N is the number of points in the peak. The statistical significance of each peak is then calculated 

according to the equation

=
S

 S

The result for each peak is then stored, and a graph showing the peak, it's background and it's statistical 

significance is printed. Figures 5, 6, and 7 show results from running NPPFinder over inv_JetJet. 

inv_GammaGamma, and inv_ElectronElectron histograms, with the detected peak points, linear 

regressions, and statistical significances displayed for each peak. For inv_JetJet and 

inv_GammaGamma, two false peaks were added at 1000 and 2500 for testing purposes. However, for 

inv_ElectronElectron no peaks were added and the detected peak represents the already known Z-

boson particle.

Conclusion

Overall NPPFinder is a promising and novel approach for detecting peaks. The program can 

detect peaks automatically taking into account statistical uncertainties and has been tested using a 

variety of input conditions. The program has also been run successfully over 1 fb-1 of ATLAS data and 

the results show that no statistically significant peaks occur in the current set of data apart from peaks 

which are already known to be present. In addition to its applications to ATLAS data analysis, 

NPPFinder also has the potential to be useful in any area which requires peak detection and background 

estimation, and could in fact easily be extended to these areas of research. There are still a few possible 



improvements to NPPFinder which are currently being addressed. These include but are not limited to 

the detection of broad peaks and the automatic determination of the sensitivity parameter. However, 

even in its current form, NPPFinder is a very useful tool for general peak detection and analysis.



Figure 5: Output from NPPFinder for inv_JetJet



Figure 6: Output from NPPFinder for inv_GammaGamma



Figure 7: Output from NPPFinder for inv_ElectronElectron
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