
I/O Monitoring for portable HPC applications

A. Vijayakumar∗

Department of Physics & Astronomy, Texas A&M University, College Station, Texas USA 77843-4242
(Dated: August 4, 2023)

Modern HEP workflows are becoming increasingly scaled and complex: understanding the I/O
behavior of these workflows could solve potential bottlenecks and help with optimization. Darshan
is a lightweight I/O characterization tool that captures concise views and entire traces (DXT) of
applications’ I/O behavior. Darshan helps to gain insight and understand the HEP workflow’s
I/O patterns. However, a significant overhead would reduce productivity and could be potentially
detrimental. My research focuses on measuring the overhead Darshan adds to the ATLAS workflow,
which is used to process billions of events collected or simulated by the ATLAS experiment. I
compared the running times of Athena with and without Darshan instrumentation to extract the
overhead. The measurement was repeated both locally and inside the container, Singularity, thus
creating 4 configurations. Each configuration was repeated 4 times, for 1, and 8 processes, and
100, 1000, and 3600 events per process, to measure the uncertainty. The results indicated that
running Athena inside the container, Singularity, does not have a significant impact on the running
time. Most of the runtime differences observed were within the 1st standard deviation. Therefore,
Darshan has been found to have negligible overhead when it instruments Athena, which indicates
that Darshan is suitable for I/O monitoring of the HEP workflows.

I. INTRODUCTION

I/O behavior is one of the biggest limiting factors of
HEP workflows, especially as they become more scaled
and complex. The case study used for this report was
the ATLAS experiment [1] at the Large Hadron Col-
lider (LHC) at CERN. In the ATLAS detector, parti-
cles collide at the center, and that debris forms into
new particles sent flying in all directions, which are
then bent using a magnet to measure their momenta.

In order to gain a better understanding of the I/O
behavior, Darshan[2], a lightweight HPC I/O char-
acterization tool, is used to instrument its workflow.
ATLAS deals with billions of events making any addi-
tional runtime detrimental to the research process. To
make a case for Darshan to monitor the ATLAS work-
flow, the overhead introduced by Darshan is crucial. A
significant overhead in this case would mean anything
that scales with the number of events or processes, at
larger runs, would add up drastically.

ATLAS offline software’s (Athena)[3] workflow has
many different stages for event processing. These
stages include generation, simulation, reconstruction,
filtering, and analysis. To measure Darshan’s over-
head most effectively, I used the most I/O intensive
stage of the workflow, the filtering stage. The filter-
ing stage filters out unnecessary information associ-
ated with events. Athena was also used in its preferred
mode for the filtering stage now and in the future,
AthenaMP. AthenaMP is the multi-process mode of
Athena. It uses multiple processes to split the work-
load for event processing making it more efficient.

Many HEP workflows, including Athena, will be
run through containers for portability. ATLAS uses
Singularity[4]. A container application is a tool that
allows programs to be run on unique software environ-
ments. To ensure that there isn’t an excessive over-

∗ ady.vijay@tamu.edu

head from the use of a container and that using a con-
tainer doesn’t affect Darshan’s overhead, I will also
measure the overhead that the container added.

II. MEASUREMENT

A. Darshan

Like it was mentioned before, Darshan is a
lightweight I/O characterization tool, that can be used
to understand the I/O behavior of a program. Darshan
has 2 components, Darshan-runtime, and Darshan-
util. Darshan-runtime is used to instrument applica-
tions, and Darshan-util helps with processing the log
files created by the runtime to generate insight into
what the I/O of the application looks like. PyDar-
shan, a python module provided by Darshan-util, helps
users to do customized analysis. An example of the
data that Darshan can provide can be seen in 1. I will
be using PyDarshan and the code in 2 to extract the
runtime from Darshan’s log files.

B. Extracting Runtimes

There are 2 ways to go about extracting runtimes,
one is through Darshan’s logs as shown above, and
the other is through Athena. I wrote a Python script
that automatically retrieved the runtimes from both
log files and created a table that compared both run-
times to see if there were significant differences be-
tween them and especially if those differences scale
with the number of events or processes. I ran this
for event counts 100, 1000, and 3600 per process, with
1 and 8 processes, making for a total of 6 runs in each
configuration inside and outside a container, then com-
pared the runtimes between the Darshan log files and
Athena log files for each corresponding test case.

From the table in 3, there is a less than 30-second
difference between runtimes retrieved from the Dar-



C Data Collection 2

FIG. 1. These are the access sizes and counts for a MPI-
I/O tutorial implementation, and an example of the types
of data that Darshan can provide

shan log file and Athena log file. The time interval of
the performance record in the Athena log is 32 sec-
onds, making any difference less than that time span
irrelevant. For all future references of runtime, they
are extracted from the Athena log files.

C. Data Collection

The goal of the experiments was to repeat each
run four times, to gain an uncertainty measurement.
The ATLAS derivation job was run at different event
counts of 100, 1000, and 3600 per process, and I was
going to do so for processes 1, and 8. Higher process
counts were run, however, due to issues mentioned in
the conclusion, those runs were not used.

Over the course of these runs, the filtering stage
had to be run approximately 100 times, making run-
ning each one individually extremely tedious and time-
consuming. In order to make the data collection pro-
cess more efficient, I created a script that would au-
tomatically store the log files of each run into a spe-
cific folder named by the convention of ”Number Of
Events Per Process-Number Of Processes”. The data
collected through this process will be used to study the
added runtime of using a container and to measure

FIG. 2. The top image contains general information that
could be extracted from Darshan’s log files through PyDar-
shan. The bottom image contains some of the performance
information and runtimes, which will be used further in the
report.

FIG. 3. Runtime table with the different runtimes inside
and outside Singularity, retrieved from Athena’s log files
and Darshan’s log files.

the overhead added by Darshan when instrumenting
Athena.

III. ANALYSIS AND RESULTS

The first data set to analyze was the runtime differ-
ence between the inside and outside of the container. I
did this for both the Darshan data set and the data set
collected without Darshan instrumentation. In figures
5, 6, 7, and 10, the top panel shows the runtime vs



3

FIG. 4. The script above creates a directory in order to
store the log files. Runs each configuration of the program
then copies the created log files over to their respective
directories.

FIG. 5. Graph of runtime for 1 process without Darshan.

the number of events per process for the local running
time, shown with the red line, and the running time
inside Singularity, indicated with the blue line. The
red line in the bottom panel represents the same red
line in the top panel, and the axis represents the dif-
ference of the points on the blue graph from the red
graph.

The error bar represents the uncertainty on the run-
time, which is extracted from the four repeated mea-
surements. No difference could be seen in the run-
ning time within the uncertainty. Thus, no visible im-
pact has been found on the running time when running
Athena within Singularity container.

As for the second set of results that I cared for,
Darshan’s overhead, I examine the difference in the
fraction of the Athena running time without Darshan.
The equation is (Darshan − Athena)/Athena where
Darshan represents the runtime with Darshan instru-
mentation and Athena represents the runtime without

FIG. 6. Graph of runtime for 1 process with Darshan.

FIG. 7. Graph of runtime for 8 processes without Darshan.

Darshan.

The second set of results showed a similar trend in
that all points in this data set were around zero within
the first standard deviation. This showed that inde-
pendent of a container, Darshan doesn’t add a signif-
icant overhead to Athena. The reason behind testing
being limited to 8 processes has to do with parallel
compression. Because parallel compression wasn’t en-
abled for these runs, 16 and 32’s later processes were
delayed by quite a bit exacerbating their runtimes. I
can view this visually in the heat map in 11. Because
of this, the usable data was restricted to the 1 and 8
processes.



4

FIG. 8. Graph of runtime for 8 processes with Darshan.

FIG. 9. Graph of the difference in runtime(%) for 1 process
with and without Darshan.

IV. CONCLUSION

Over the course of the program, my project required
the measurement of 4 different conditions: Athena
with and without Darshan, inside and outside of Sin-
gularity. What was observed was that running inside
Singularity had no significant impact on runtime, even
at higher events and processes. Furthermore, running
with Darshan doesn’t add any significant overhead re-
gardless of the container being used. I also justified
the use case of Athena’s log files to extract the run-
time as there was a less than 30-second difference be-
tween the running time recorded in the Athena and
Darshan logs. This difference has been accounted for
by both the time interval that Athena logs retrieve
wall-runtime and the stage at which Athena starts
recording its runtime. The overall results from the
experiment are favorable and make an excellent case
for the use of Darshan.

The next steps to continue this project would be to

FIG. 10. Graph of the difference in runtime(%) for 8 pro-
cess with and without Darshan.

FIG. 11. The read and write operations from each worker
to the shared writer during the 16 process.

collect data at a larger scale at higher event counts
while using parallel compression in order to avoid the
issues that happened during my testing at 16 and 32
processes. More testing would help solidify the find-
ings and reduce the significance of the error in the data
enabling a more accurate conclusion.

V. ACKNOWLEDGEMENTS

This work was supported by the U.S. Department
of Energy, Office of Science, Office of High Energy
Physics, High Energy Physics Center for Computa-
tional Excellence (HEP-CCE).

This work is in part supported by the Director, Of-
fice of Advanced Scientific Computing Research, Of-
fice of Science, of the U.S. Department of Energy un-
der Contract No. DE-AC02-06CH11357; in part sup-
ported by the Exascale Computing Project (17-SC-
20-SC), a joint project of the U.S. Department of En-
ergy’s Office of Science and National Nuclear Security
Administration, responsible for delivering a capable
exascale ecosystem, including software, applications,
and hardware technology, to support the nation’s ex-
ascale computing imperative; and in part supported by
the U.S. Department of Energy, Office of Science, Of-



5

fice of Advanced Scientific Computing Research, Sci-
entific Discovery through Advanced Computing (Sci-

DAC) program.
This research used resources at Argonne Laboratory

Computing Resource Center (LCRC).

[1] ATLAS Collaboration, The ATLAS experiment at the
CERN large hadron collider, JINST 3, S08003.

[2] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang,
R. Latham, and R. Ross, Understanding and improving
computational science storage access through continu-
ous characterization, in 2011 IEEE 27th Symposium on
Mass Storage Systems and Technologies (MSST) (2011)

pp. 1–14.
[3] The ATLAS Collaboration Software and Firmware,

Tech. Rep. ATL-SOFT-PUB-2021-001 (CERN,
Geneva, 2021).

[4] V. S. Gregory M. Kurtzer and M. W. Bauer, Singular-
ity: Scientific containers for mobility of compute, PLOS
ONE (2017).


