Reconstruction of KOs using MinBias

7 TeV data

Zach Epstein

LHC

- LINAC2->PBS->PS->SPS->main ring (450Gev->7TeV)
- 1-2 times daily -> injection
- Accelerate 20 min , circulate $10-24 \mathrm{hr}$
- 4 intersection pts
- Superconducting niobium-titanium cables-> low-resistance B fields
- Liquid helium

ATLAS

- Magnetic field around the proton beam
- Straw Trackers
- Charged particle->ionization->gradient->signal
- Transition radiation detector
- Varying indexes of refraction->transition radiation->stronger signal in straws
- Electromagnetic calorimeter
- Electron sees a charged nucleus->accelerates around it->emits photon->e-e+ pair->hits light emitting material->track light
- Height of peak proportional to amt of energy
- Hadron calorimeter
- Penetrate deeper->showers tend to start out later
- Collide with nucleus->pions->pi neutral->2 photons->EM shower
- Much messier
- For a particular track, Eem/(Eem+Eh)
- Test beams->energy distribution
- Compensate for scale and distribution->put weight on energy

Muon Spectrometer

- Heavy leptons->don't accelerate much around the nuclei->doesn't radiate much->very penetrating
- Can get tracked in calorimeter \& ionize gas->some signal
- BUT much less than a shower would give you
- Much thicker straws->combine tracks->energy and momentum of muon

ROOT

- Bash (shell)
- Devices->CPU
- Linux

Compilation of technical bit-level operations

- C++, ROOT
- Large amounts of same-class data->TTrees

GUIs

Neutral kaons

Properties of kaons											
Particle name	Particle symbol \square	Antiparticle symbol	Quark content	Rest mass ($\mathrm{MeV} / \mathrm{c}^{2}$)	$\mathbf{I}^{\text {G }}$	$\mathrm{J}^{\text {PC }}$ 回	S $\underbrace{\text { d }}$	C -	B' ${ }^{\text {- }}$	Mean lifetime (s)	Commonly decays to ($>5 \%$ of decays)
Kaon ${ }^{[1]}$	\mathbf{K}^{+}	\mathbf{K}^{-}	us	$0,493.677 \pm 0.016$	$1 / 2$	0^{-}	1	0	0	$1.2380 \pm 0.0021 \times 10^{-8}$	$\begin{gathered} \mu^{+}+v_{\mu} \text { or } \\ \pi^{+}+\pi^{0} \\ \pi^{+}+\pi^{+}+\pi^{-} \text {or } \\ \pi^{0}+e^{+}+v_{e} \end{gathered}$
Kaon ${ }^{[2]}$	$\mathrm{K}^{\mathbf{0}}$	$\overline{\mathbf{K}}^{\mathbf{0}}$	$\mathrm{d} \bar{s}$	$0,497.614 \pm 0.024$	$1 / 2$	0^{-}	1	0	0	[a]	[a]
K-Short ${ }^{[3]}$	$\mathrm{K}_{\mathbf{S}}^{\mathbf{0}}$	Self	$\frac{\mathrm{d} \overline{\mathrm{~s}}-\mathrm{s} \overline{\mathrm{~d}}^{[b]}}{\sqrt{2}}$	$0,497.614 \pm 0.024^{[c]}$	$1 / 2$	0^{-}	(*)	0	0	$8.953 \pm 0.005 \times 10^{-11}$	$\begin{gathered} \pi^{+}+\pi^{-} \text {or } \\ \pi^{0}+\pi^{0} \end{gathered}$
K-Long ${ }^{[4]}$	K_{L}^{0}	Self	$\frac{\mathrm{d} \overline{\mathrm{~s}}+\mathrm{s} \overline{\mathrm{~d}}^{[\mathrm{b}]}}{\sqrt{2}}$	$0,497.614 \pm 0.024^{[c]}$	$1 / 2$	0^{-}	(*)	0	0	$5.116 \pm 0.020 \times 10^{-8}$	$\begin{aligned} & \pi^{ \pm}+e^{\mp}+v_{e} \text { or } \\ & \pi^{ \pm}+\mu^{\mp}+v_{\mu} \text { or } \\ & \pi^{0}+\pi^{0}+\pi^{0} \text { or } \\ & \pi^{+}+\pi^{0}+\pi^{-} \end{aligned}$

GOals

- Reconstruct KOs mass peak
- Compare with MC predictions (PYTHIA MinBias) (width/peak)
- Optimize selection cuts to maximize S/B ratio
- Reconstruct pT/Eta spectrum and compare with MC
- Look at the Dalitz plot
- Reconstruct KOKO mass spectrum (if 2 candidates are found in an event) - S/B ratio should be further increased
- do we see KOKO resonances (f(1520 etc..)
- Look at Lambda/Lambda(bar) (if time allows)

Main Programs

Using MinBias D3PD ntuples on the PC farm (7 Tev data), Intg. Lumi= $400 \mathrm{mb}-1$ D3PD contains V0 information
Using C++/ROOT program
Computer farm to process data
.IA_RUN_MC, IA_RUN_DATA
CutEvent.cxx
Tracks.cxx
analysis.h
Histo.cxx

Calculation of invariant mass

Declaring invMass with $\mathrm{E}^{\wedge} 2=(\mathrm{pc})^{\wedge} 2+\left(\mathrm{mc}^{\wedge} 2\right)^{\wedge} 2$

```
double px1=pt * cos(phi);
double py1=pt * sin(phi);
double pz1=pt * sinh(eta);
double e1 = sqrt(px1*px1+py1*py1+pz1*pz1+MPION2);
double pxt=px1+px2;
double pyt=py1+py2;
double pzt=pz1+pz2;
double ee=e1+e2;
double invMass = sqrt(ee*ee- pxt*pxt - pyt*pyt - pzt*pzt);
```

Declaring and filling histogram invMass
In the end, we switched to v0 variables->K0short.cxx

Early MC vs DATA

KOshort mass reconstruction

- Methods:
- CutEvent.cxx: TakeEvent cut
- Too many events had K0short

KOshort.cxx: ksMass cut

- Signal=.497 $\pm .018 \mathrm{GeV}$

KOshort mass reconstruction

Signal versus background (top) after setting fabs(cosThetaPointing)>. 999

KOshort cuts

- Event cuts

- MinBias MBTS_1 trigger
- PileUp cleaning cut
- Vertex selection, cut for 2 tracks, etc

Cuts on tracks:

- |eta|<MaxEta
- pt>MinPt
- $|d 0|>5 \mathrm{~mm}$ or $|z 0|>5 \mathrm{~mm}$

Cuts on VO:

- fabs(v0_costhetapointing)>. 999
- v0_totalFlightDistance>4
- v0_properDecayTime>11

MC

Later MC vs Data

Comparison of MC vs Data

Red is Data here

Test for accuracy of QCD prediction

Data Fitting

-Two Gaussians for signal Line for background -Adding a Gaussian and manually defining the second Gaussian

Number of KOshort candidates for Pt and Eta Range

Dividing integral by bin width
if (v0_ksEta->at(j) >-2.5 \&\& v0_ksEta->at(j) <=-2.0) \{ h.vO_Eta1Mass->Fill (v0_ksMass->at(j)/GeV); \}

KOshort candidates by Pt and Eta Range

Red is MC here

- Method - conjoin.cxx Consistent with QCD predictions?
- Conclusions

Number of K0short candidates by Eta Range

Future Goals

Reduce background for KOshort - Reduce background for lambda KOKO

- KOshort vs Lambda (\#candidates)
- Lambda vs lambda bar (\#candidates)-> remembering that it's matter?

