Reconstruction of K0s using MinBias 7 TeV data

Zach Epstein

ATLAS

Magnetic field around the proton beam
Straw Trackers

- Charged particle->ionization->gradient->signal
- Transition radiation detector
 - Varying indexes of refraction->transition radiation->stronger signal in straws
- Electromagnetic calorimeter
 - Electron sees a charged nucleus->accelerates around it->emits photon->e-e+ pair->hits light emitting material->track light
 - Height of peak proportional to amt of energy
- Hadron calorimeter
 - Penetrate deeper->showers tend to start out later
 - Collide with nucleus->pions->pi neutral->2 photons->EM shower
 - Much messier
 - For a particular track, Eem/(Eem+Eh)
 - Test beams->energy distribution
 - Compensate for scale and distribution->put weight on energy

Muon Spectrometer

- Heavy leptons->don't accelerate much around the nuclei->doesn't radiate much->very penetrating
- Can get tracked in calorimeter & ionize gas->some signal
 - BUT much less than a shower would give you
- Much thicker straws->combine tracks->energy and momentum of muon

ROOT

- Bash (shell)
- Devices->CPU
- Linux
- Compilation of technical bit-level operations
- C++, ROOT
- Large amounts of same-class data->TTrees GUIs

Neutral kaons

Properties of kaons											
Particle name	Particle symbol 河	Antiparticle symbol 🕅	Quark content	Rest mass (MeV/c ²) ₪	I ^G M	J ^{PC} ⋈	S 🕅	CM	B' 🖂	Mean lifetime (s)	Commonly decays to (>5% of decays)
Kaon ^[1]	к+	ĸ⁻	us	0,493.677 ±0.016	¹ / ₂	0-	1	0	0	1.2380 ± 0.0021 × 10	$ \begin{array}{c} \mu^{+} + \nu_{\mu} \text{ or} \\ \pi^{+} + \pi^{0} \\ \pi^{+} + \pi^{+} + \pi^{-} \text{ or} \\ \pi^{0} + e^{+} + \nu_{e} \end{array} $
Kaon ^[2]	κ ⁰	ĸ	ds	0,497.614 ±0.024	¹ / ₂	0-	1	0	0	[a]	[a]
K-Short ^[3]	κs	Self	$\frac{d\bar{s}-s\bar{d}}{\sqrt{2}}^{[b]}$	0,497.614 ± 0.024 ^[c]	1/2	0-	(*)	0	0	$8.953 \pm 0.005 \times 10^{-1}$	$\begin{array}{c} \pi^{+} + \pi^{-} \text{ or} \\ \pi^{0} + \pi^{0} \end{array}$
K-Long ^[4]	κů	Self	$\frac{d\bar{s}+s\bar{d}}{\sqrt{2}}^{[b]}$	0,497.614 ± 0.024	1/2	0-	(*)	0	0	$5.116 \pm 0.020 \times 10^{-1}$	$\pi^{\pm} + e^{\mp} + \nu_{e} \text{ or}$ $\pi^{\pm} + \mu^{\mp} + \nu_{\mu} \text{ or}$ $\pi^{0} + \pi^{0} + \pi^{0} \text{ or}$ $\pi^{+} + \pi^{0} + \pi^{-}$
Supernosition											

- Superposition
- Mostly created by fragmentation
- Slow decay via weak interaction
- Primary vs secondary
- Requires secondary vertex
- reconstruction (flight distance =XXX)

- Reconstruct K0s mass peak
- Compare with MC predictions (PYTHIA MinBias) (width/peak)
- Optimize selection cuts to maximize S/B ratio
- Reconstruct pT/Eta spectrum and compare with MC
- Look at the Dalitz plot
- Reconstruct K0K0 mass spectrum (if 2 candidates are found in an event)
- S/B ratio should be further increased
- do we see K0K0 resonances (f(1520 etc..)
- Look at Lambda/Lambda(bar) (if time allows)

Main Programs

Using MinBias D3PD ntuples on the PC farm (7 Tev data), Intg. Lumi= 400 mb-1 D3PD contains V0 information Using C++/ROOT program Computer farm to process data

./A_RUN_MC, ./A_RUN_DATA CutEvent.cxx Tracks.cxx analysis.h Histo.cxx

Calculation of invariant mass

Declaring invMass with E^2=(pc)^2+(mc^2)^2

double px1=pt * cos(phi); double py1=pt * sin(phi); double pz1=pt * sinh(eta); double e1 = sqrt(px1*px1+py1*py1+pz1*pz1+MPION2);

•••••

double pxt=px1+px2; double pyt=py1+py2; double pzt=pz1+pz2; double ee=e1+e2; double invMass = sqrt(ee*ee- pxt*pxt - pyt*pyt - pzt*pzt);

Declaring and filling histogram invMass

In the end, we switched to v0 variables->K0short.cxx

Early MC vs DATA

No cut optimization

KOshort mass reconstruction

Methods:
 CutEvent.cxx: TakeEvent cut

- Too many events had K0short
- K0short.cxx: ksMass cut
 - Signal=.497<u>+</u>.018GeV

KOshort mass reconstruction

Signal versus background (top) after setting fabs(cosThetaPointing)>.999

KOshort cuts

Event cuts

- MinBias MBTS_1 trigger
- PileUp cleaning cut
- Vertex selection, cut for 2 tracks, etc
- Cuts on tracks:
- Ieta
- pt>MinPt
- Id0|>5mm or |z0|>5mm
- Cuts on V0:
- fabs(v0_costhetapointing)>.999
- v0_totalFlightDistance>4
- v0_properDecayTime>11

MC

Later MC vs Data

MC is on top here

Comparison of MC vs Data

Red is Data here

Test for accuracy of QCD prediction

Data Fitting

Two Gaussians for signal
Line for background
Adding a Gaussian and manually defining the second Gaussian

Number of K0short candidates for Pt and Eta Range

Dividing integral by bin width
 if (v0_ksEta->at(j) >-2.5 && v0_ksEta->at(j) <=-2.0) {
 h.v0_Eta1Mass->Fill (v0_ksMass->at(j)/GeV); }

K0short candidates by Pt and Eta Range

Red is MC here

Method
conjoin.cxx
Consistent with QCD predictions?
Conclusions

Future Goals

- Reduce background for K0short
 Reduce background for lambda
 K0K0
- K0short vs Lambda (#candidates)
- Lambda vs lambda bar (#candidates)-> remembering that it's matter?