





## Objectives

- •Search for  $H \rightarrow Z \gamma$  using event selection cuts identical to those used by the SM Z  $\gamma$  group.
- •Use this analysis to study the kinematic distributions relevant for  $H \rightarrow Z \gamma$  and develop techniques for suppressing the SM  $Z\gamma$  background.
- •Using the standard ATLAS limit setting techniques, exercise the tools required for setting limits on a Z  $\gamma$  signal with this data set.

#### **Analysis Philosophy**

- Two step approach
- (1) Blinded Analysis: Reconstruct the leptons and photons using the EGamma approved selection criteria, as well as the selection used for the SM  $Z\gamma$  cross-section measurement.
- (2) *Tuned Analysis:* Develop cuts motivated by the decay properties of the Higgs.



## Introduction

#### Expectations

- •Branching fraction  $\Gamma(H \rightarrow Z\gamma)$  is comparable to  $\Gamma(H \rightarrow \gamma \gamma)$  at 1.553  $\times$  10<sup>-3</sup> GeV.
- •The total final state cross-section,  $\sigma(H \rightarrow l/\gamma)$ , is comparable to the golden channel,  $\sigma(H \rightarrow IIII)$ : -~15 events using both muon and electron channels at 10 fb<sup>-1</sup> assuming 100% efficiency and acceptance.



#### Motivation

•The  $H \rightarrow Z\gamma$  is produced via a loop of destructively interfering W/top pairs, which is the same process as  $H \rightarrow \gamma \gamma$ :





•There is a hint of a high branching fraction for  $H \rightarrow \gamma \gamma$ , so a measurement / limit of  $\Gamma(H \rightarrow Z \gamma)$ would confirm or refute this observation.

#### In addition

- (1) All final state particles can be measured well with the ATLAS detector.
- (2) The Higgs mass can be measured from the total invariant mass spectrum. (3) The spin of the Higgs can be studied by analyzing the angular distributions of the decay
- products. (4) This channel can be used for setting limits on the Higgs coupling constants.

# Search for the Standard Model Higgs Boson in the H -> Zy Decay Mode

### Joshua Loyal<sup>a</sup>

Advisors: B. Auerbach<sup>b</sup>, S. Chekanov<sup>b</sup>, A.T. Goshaw<sup>a</sup> <sup>a</sup>Duke University, <sup>b</sup>Argonne National Laboratory

## Methods

#### **Object Selection**

- Lepton: A pair of oppositely charged leptons each with a  $p_T > 25$  GeV of the same flavor.
- -Muon: Isolated Combined and lies in the range  $|\eta| < 2.4$
- -Electron: Isolated Medium++ and is contained in the fiducial region  $1.52 < |\eta| < 2.47$ .
- •Photon: Tight,  $p_T > 15$  GeV,  $|\eta| < 2.37$  excluding the crack region, isolated ( $E_TCone30 > 6 \text{ GeV}$ ) and  $\Delta R(lepton, photon) > 0.7$ .

#### **Event Selection**

- •GRLs / LarError (2011)
- •Primary vertex has  $\geq$  3 associated tracks
- Di-lepton triggers

### Limit Setting Strategy

•Set the limit using SM Zy Monte Carlo: (1)Gaussian  $H \rightarrow Z\gamma$  signal:

- -Width determined from the mass resolution
- -Expected signal determined from NNLO
- predictions with known branching ratios scaled by our selection's efficiency
- (2) Polynomial Background
- -Remove the signal region from data and fit a second degree polynomial to the remaining data points.

## Results

### Zy Mass Distributions

- •Distributions of the invariant mass of the Zγ system for 2011 (top) and 2012 (bottom) in the electron channel.
- •A Sherpa  $Z\gamma$  + 0-3 jets Monte Carlo sample (white histogram) is compared with the 2011 data. The Monte Carlo is normalized to the 4.9 fb<sup>-1</sup> of luminosity delivered by the ATLAS detector in 2011.
- Good agreement between theory and data is seen in the electron channel. The large agreement between the signal Monte Carlo and the data indicates a low background rate for the Zγ signal.
- •However, no clear signal for a SM Higgs boson is seen.



| Backgrounds      |
|------------------|
| at 7, production |

Direct Zy production  $Z\gamma$  production due to fragmentation

Z+jets

t-tbar

Z →tau tau

Other electroweak backgrounds

 Two oppositely charged leptons One good and isolated photon • $\Delta R(lepton, photon) > 0.7$ 

### **P-Value Calculation**

Test Statistic: Profile Likelihood Ratio

$$\lambda(\mu) = \frac{L(\mu, \hat{\hat{\theta}})}{L(\hat{\mu}, \hat{\theta})} \rightarrow \text{Fix } \mu, \text{ fit } \theta$$
where

where

$$L(\mu, \theta) = \prod_{i=1}^{m} \frac{(\mu s_i + b_i)^{n_i^{obs}}}{n_i^{obs}!} e^{-(\mu s_i + b_i)}$$





Boson in the Over Looked Channel, arXiv:1112.1405v2 [hep-ph]