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1 GENERAL INFORMATION 
 The FTK to Level-2 Interface Card (FLIC) is an Advanced Telecommunications Computing 
Architecture (ATCA) module designed as part of the ATLAS Fast TracKer (FTK) to receive data records 
from Second Stage Boards (SSBs) via optical fiber, decode the packet structure of those records, perform 
on-the-fly lookup of detector physical geometry information from local RAM buffers, merge the physical 
geometry data into the SSB tracks, package the merged data into S-Link packets and transmit them to the 
ReadOut Subsystem (ROS) using SFP optical transceivers on a rear transition module.  Each FLIC has 
eight front-panel SFP fiber optic inputs, one for each of eight “half-SSB” boards, such that two FLICs 
collect all the data from the FTK system.  Each FLIC implements DDR ram buffers and four 10GbE links 
so that selected records of interest may be copied to ATCA processor blades resident in the same ATCA 
shelf as the FLIC.  A mesh of internal FPGA-to-FPGA serial links allow collection of data from all “half-
SSBs” into a single assembled record fragment for transmission to a processor blade over any of the four 
10GbE links. 

 The system specification document for the FLIC defines the specifications of the module.  This 
document contains specific information regarding details of the hardware and firmware design to assist 
the reader in the use of the module.  Statements herein are intended to convey how the design achieves the 
specifications as stated, not the specifications themselves.  This revision of the document applies only to 
the production FLIC boards.  An earlier version of this document provides information about the 
prototypes. 

1.1 ATCA	shelf	implementation	
The ATCA shelf used for the FLIC system contains 6 slots, connected together by a 3x mesh 

backplane.  Two FLIC boards are installed into hub slots 1 and 2.  This allows each FLIC, which uses 
only one mesh of the 3X fabric, to have a private ATCA channel to each of slots 3, 4, 5 and 6.  It is 
envisioned that these slots of the ATCA shelf will be populated by processor boards to enable monitoring 
of the data flowing through each FLIC.   

The FLIC implements a DIMM socket intended to house an Intelligent Platform Management 
Controller (IPMC) module designed by the Laboratoire d’Annecy-le-Vieux de Physique des Particules 
(LAPP) for the ATLAS collaboration.  This IPMC implements all communication with the Shelf Manager 
and is the only part of the FLIC that connects to the Base Interface of the ATCA shelf. 

1.2 Front	Panel	

 
Figure 1 – Front panel of FLIC 

 

 The front panel of the FLIC is shown in Figure 1.  All LEDs are grouped together in one place 
left of the SFPs.  In the middle, eight SFP optical modulators provide connections to the rest of FTK.  To 
the right of the SFPs, is the Ethernet cable connection that provides a direct interface to the FLIC’s 
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microprocessor for test bench operation.  At the far right, is the RJ-11 connector used to program the on-
board microprocessor. 

1.3 Board	Layout	Overview	

 
Figure 2 – View of component side of FLIC 

 

Figure 2 shows the component side of the board.  The FLIC holds five FPGAs; four Virtex-6 main 
FPGAs are easily identified by the large heatsinks.  These are commonly referred to as “U1” through 
“U4”, respectively from left to right.  “U1” and “U2” are connected to the eight SFP optical modulators at 
the front of the module and also connect to eight more SFPs through the rear transition module (RTM) 
connector.  “U3” and “U4” connect to “U1” and “U2” via an internal mesh of high speed serial links and 
also connect to four 10GbE channels of the ATCA main fabric.   

At the lower right of Figure 2, near the power supply, a smaller Spartan-3 FPGA may be seen; this 
is referred to as the “Management FPGA”.  A Microchip PIC microcontroller is also located in this corner 
of the board that interfaces to the front panel Ethernet connector and the Management FPGA to provide 
register access and slow control.  The large DIMM socket at lower right is for the LAPP IPMC module 
that connects to the ATCA Shelf Manager, the Management FPGA and the PIC micro.   
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 JTAG connections for the FPGAs and LED light pipes are seen at bottom right.  Two JTAG 
connectors are used to separate the Management FPGA and the main FPGA chains by voltage.  A blue 
debug/programming connector for the IPMC module is located near the ATCA P1 connector. 

1.4 Power	Distribution	
48V power from the ATCA backplane enters via connector P1 through a PIM300 power entry 

module in accordance with ATCA specifications.  A PTEA420033N2AD 48V to 3.3V, 20A converter 
provides bulk power to the board.  Test points on the board allow connection of a benchtop 48V supply to 
ease diagnosis & repair of the hardware.  This bulk converter is enabled by processor control.  Only the 
PIC microcontroller, the Spartan-3 FPGA and the IPMC interface module are powered from ATCA 
management power.  Each of the four main FPGAs have point-of-load power converters to derive 
required FPGA and DDR memory voltages from the board-wide +3.3V, once the bulk converter is 
enabled.  When the IPMC interface module is installed, the power on/power off commands sent by the 
Shelf Manager are decoded by the IPMC and passed through the on-board PIC microcontroller to the 
power modules.  

1.5 Control	Architecture	
The PIC microcontroller is connected to a front panel Ethernet port, and communicates with a small 

Spartan-3 FPGA.  The Spartan-3 implements a parallel address bus and a parallel data bus connected to 
each of the four main FPGAs for slow control purposes, as shown in Figure 3.   The PIC performs register 
read or write operations in response to simple UDP commands packets with a target device number to 
select between FPGAs.  This is described in detail in Section 4.1.   

 

Figure 3 – slow control architecture of FLIC 
 

Firmware images for the main FPGAs are stored in local non-volatile Flash memory, managed by 
the Spartan-3 Management FPGA that may be loaded through the front panel Ethernet port.  Each Flash 
memory chip is partitioned into areas to contain a main FPGA firmware image and module ID coordinate 
data storage for transfer to the SRAMs of the two Pipeline FPGAs.  After the main board power is 
enabled, state machines in the Management FPGA are used to load the main FPGAs from the Flash 
memory.  After FPGA initialization a separate command initiates automated transfer of the module ID 
data from the Flash memories into the SRAM module ID lookup tables associated with FPGAs U1 and 
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U2.  After all initialization of FPGAs and memories is complete, operational setup is achieved by writing 
individual registers of the FPGAs.  The 35-bit expansion bus of the LAPP IPMC module has been 
connected to the Spartan-3 to allow for future development of firmware to support slow control and 
firmware maintenance through the IPMC module. 

1.6 System	Monitoring	
Analog multiplexers allow the PIC microcontroller to measure all voltages associated with each 

main FPGA using the A/D converter of the PIC.  The point-of-load power distribution sub-system for 
each Virtex-6 FPGA is shown in Figure 4. 

 

Figure 4 – Point of load distribution and monitoring 
 

Eight analog data values are available per main FPGA; six voltages, one current and one fault 
signal.  The ‘fault’ signal is tied by a resistive divider to the +3.3V and reads a known fraction of +3.3V if 
no fault is present, 0V if any of the GTX linear regulators are in a fault state.  The PIC32MX695F512L 
implements a 16-channel, 10-bit multiplexed ADC as shown in Figure 5, taken from the Microchip 
documentation (section 17, figure 17-1). 
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Figure 5 – PIC32MX695F512L ADC architecture 
Each of the eight analog voltages is connected through an analog multiplexer to one of the 

multiplexed ADC inputs of the PIC (AN2, AN3, AN4, & AN5).  Thus, with four main FPGAs the PIC 
can sample 32 voltage/current/fault parameters from the main FPGAs by first selecting which PIC ADC 
input is to be used (which main FPGA), then asserting a 3-bit analog mux selection code (which analog 
value of the selected FPGA block), and then performing a conversion.  Through the front panel Ethernet 
interface the PIC may be commanded at any time to scan all channels and save a block of conversions to 
local memory.  These values may then be read out through that same Ethernet interface to monitor all 
useful voltages & currents. 

1.6.1 Temperature	monitoring	
The Virtex-6 FPGAs have temperature monitoring capability using the “System Monitor” block of 

the FPGA, as described in Xilinx document UG320.  The AVDD pin of each Virtex-6 has been connected 
to the +2.5V power supply, and the AVSS, VREFP and VREFN pins are all tied to ground, setting up the 
“System Monitor” for its simplest configuration using the internal reference.  The “System Monitor” 
temperature is regularly sampled and made available through the register interface of each FPGA build 
(Pipeline, ATCA Interface and SSB Emulator). 

A secondary method of temperature measurement is supported by the PIC and the Management 
FPGA.  This method uses the variable output voltage obtained from the Comparator Reference block of 
the PIC, and four digital outputs from the Management FPGA.  Through these connections the 
temperature sensing diode of each main FPGA may be separately energized and the voltage dropped 
across the selected diode read using analog input channel AD11 of the PIC. 

1.6.2 Monitoring	through	ATCA	
The LAPP IPMC is connected to the PIC via an I2C bus so that the PIC is the single “sensor” for 

the entire board.  Interrupt-driven software within the PIC based upon a timer may perform measurements 
of all voltage, current and temperature parameters in the background, leaving the most recent 
measurements in a block of memory.  When accessed by the LAPP IPMC, this block of memory may be 
read out and made available to the Shelf Manager. 
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2 ELECTRICAL	&	MECHANICAL	SPECIFICATIONS	

2.1 PC	board	construction	
The FLIC is standard FR-4 construction with 18 trace layers.  The surface finish is electroless gold 

over nickel (ENIG) with white silkscreen over liquid photo-imageable soldermask on both sides.  All 
differential traces are 100 ohm characteristic impedance. 

2.2 Mechanical	specifics	
The FLIC is the standard size specified in PICMG 3.0 for an ATCA front board.  A Schroff front 

panel with Southco handles (ATCA standard) is used. 

2.3 Power	and	Cooling	requirements	
 Nominal power dissipation of the FLIC is 57 Watts with all FPGAs fully programmed and active.  
Of this, approximately 8 Watts is management power. 

2.4 Front	Panel	Connectors	
Front panel connections to the FLIC include two JTAG connectors, a PIC programming connector 

and a front panel Ethernet port. 

2.4.1 JTAG	Connectors	
Two JTAG connectors are provided at the front of the FLIC for debugging and analysis of FPGA 

operation.  Due to the differing voltage requirements of the Spartan-3 vs. the Virtex-6, unique JTAG 
chains are required.  Two standard 20-pin Xilinx JTAG connectors are provided, one for each chain, 
immediately behind the front panel, as shown in Figure 6.  The Main FPGA JTAG chain uses +2.5V 
power as is required for Virtex-6 FPGAs.  The Management FPGA JTAG chain uses +3.3V power as is 
required for the Spartan-3. 

 
Figure 6 – JTAG connector location and identification 

 

Internal zero ohm resistors are used to provide oscilloscope probing points for debugging of JTAG 
problems.  These resistor sets, one per Virtex-6, may be installed in two different ways to either include 
or exclude the given FPGA from the JTAG chain. 
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2.4.2 PIC	programming	connector	
A 6-pin telephone (RJ-11) jack is used for the PIC programming interface.  Figure 7 shows the 

pinout, taken from the Microchip web site at  

http://ww1.microchip.com/downloads/en/DeviceDoc/DS-51765C.pdf.  

 

 
Figure 7 – Microchip PIC ICD connector pinout 

2.4.3 Front	Panel	Ethernet	connector	
The front panel Ethernet connection of the FLIC is a standard RJ-45 connector (Amphenol J00-

0065NL with internal magnetics).  The FLIC uses a KSZ8051RNL PHY and supports communication at 
speeds up to 100BASE-T. 

2.4.4 Front	Panel	LED	indicators	
Twelve front panel LED indicators provide general status.  The LEDs are arranged in a 5x3 block 
of LEDs with 7 subsections as shown in Figure 8.   

 
Figure 8 – LED indicator block 

 

 The two Processor LEDs are labeled ATCA (blue) and ERR (red).  If an IPMC module is plugged 
into the FLIC a resistor stuffing option allows the “ATCA” LED to be driven by the IPMC in accordance 
with ATCA specifications.  In the default assembly the “ATCA” LED is driven by the on-board PIC 
processor and is used for generic status.  The ERR indicator is normally illuminated when the FLIC has 
no Ethernet connection on the front panel port and extinguishes when an Ethernet connection is present.  

 The two Management FPGA LEDs are the CNFG (configure) and the PROG (labeled “P”) 
indicators.  Both LEDs are under the control of the Management FPGA and are generally used to indicate 
the status of firmware download to the four main FPGAs.  However, these LEDs are under firmware 
control of the Management FPGA and the exact meaning depends upon the firmware version in place. 
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 Three Power Status LEDs, labeled “A”, “B” and “M”, display the power state of the FLIC.  The 
“A” LED is illuminated if the +3.3V management power to the FLIC is present and the internal voltage 
monitor for the Management FPGA indicates that all sub-voltages derived from management power are 
within tolerance.  The “B” LED illuminates if the board-wide +3.3V power is enabled.  The “M” LED 
illuminates if the +3.3V management power is present. 

 Each Virtex-6 main FPGA of the FLIC (“U1” through “U4”) drives two LEDs.  The upper green 
LED is labeled “EV” (for “event”) for each and the lower yellow LED is labeled “FC” (for “flow 
control”) as the nominal expected usage is to illuminate the LEDs to indicate that records are being 
processed and/or that flow control is being asserted.  However, both LEDs are defined by the exact 
firmware loaded into the main FPGAs and thus the meaning of each may vary. 

2.4.5 IPMC	module	LED	signals	
The IPMC module from LAPP has four LED output signals named ATCA, LED1, LED2 and 

LED3, all of which are defined by whatever firmware is running within the processors of the IPMC 
module.  As previously noted a resistor stuffing option allows the blue ATCA LED of the FLIC to be 
driven by the ATCA output of the IPMC.  The LED1 and LED2 outputs of the IPMC are connected to 
input pins of the PIC microcontroller to allow either of these signals to be monitored or optionally routed 
out to the 2nd processor LED (ERR) by firmware if deemed necessary. 

2.5 Rear	Connectors	
The FLIC conforms to all rear connector pinouts for ATCA Zone 1 and ATCA Zone 2 as specified 

in PICMG 3.0.  Additional connectors in Zone 3 are used for the RTM of the FLIC, with a custom pinout 
as defined in Table 1Error! Reference source not found..  Each pair of rows services one SFP of the 
RTM, as indicated by the bold lines. 
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Row  Pin A  Pin B  Pin AB  Pin C  Pin D  Pin CD  Pin E  Pin F  Pin EF  Pin G  Pin H  Pin GH 

P1‐1  TX+  TX‐  GND  RX+  RX‐  GND  RATESEL  LOS  GND  TFAULT
1
  TDIS  GND 

P1‐2  N/C  N/C  GND  N/C  MOD DET GND  RSVD
2
  N/C  GND  SERCLK  SERDAT  GND 

P1‐3  TX+  TX‐  GND  RX+  RX‐  GND  RATESEL  LOS  GND  N/C  TDIS  GND 

P1‐4  N/C  N/C  GND  N/C  MOD DET GND  N/C  N/C  GND  SERCLK  SERDAT  GND 

P1‐5  TX+  TX‐  GND  RX+  RX‐  GND  RATESEL  LOS  GND  N/C  TDIS  GND 

P1‐6  N/C  N/C  GND  N/C  MOD DET GND  N/C  N/C  GND  SERCLK  SERDAT  GND 

P1‐7  TX+  TX‐  GND  RX+  RX‐  GND  RATESEL  LOS  GND  N/C  TDIS  GND 

P1‐8  N/C  N/C  GND  N/C  MOD DET GND  N/C  N/C  GND  SERCLK  SERDAT  GND 

P1‐9  N/C  N/C  GND  N/C  N/C  GND  N/C  N/C  GND  N/C  N/C  GND 

P1‐10  N/C  N/C  GND  N/C  N/C  GND  N/C  N/C  GND  N/C  N/C  GND 

P2‐1  TX+  TX‐  GND  RX+  RX‐  GND  RATESEL  LOS  GND  N/C  TDIS  GND 

P2‐2  N/C  N/C  GND  N/C  MOD DET GND  N/C  N/C  GND  SERCLK  SERDAT  GND 

P2‐3  TX+  TX‐  GND  RX+  RX‐  GND  RATESEL  LOS  GND  N/C  TDIS  GND 

P2‐4  N/C  N/C  GND  N/C  MOD DET GND  N/C  N/C  GND  SERCLK  SERDAT  GND 

P2‐5  TX+  TX‐  GND  RX+  RX‐  GND  RATESEL  LOS  GND  N/C  TDIS  GND 

P2‐6  N/C  N/C  GND  N/C  MOD DET GND  N/C  N/C  GND  SERCLK  SERDAT  GND 

P2‐7  TX+  TX‐  GND  RX+  RX‐  GND  RATESEL  LOS  GND  N/C  TDIS  GND 

P2‐8  N/C  N/C  GND  N/C  MOD DET GND  N/C  N/C  GND  SERCLK  SERDAT  GND 

P2‐9  N/C  N/C  GND  N/C  N/C  GND  N/C  N/C  GND  N/C  N/C  GND 

P2‐10  N/C  N/C  GND  N/C  N/C  GND  N/C  N/C  GND  N/C  N/C  GND 

Table 1 – Pinout of FLIC RTM connector 
 

+3.3V power to the RTM of the production FLIC is provided by connector J30 as specified in PICMG 
3.8. 
 

2.6 Physical	Interface	to	ATCA	backplane	
The FLIC makes connection to the ATCA backplane for power and to the main fabric for 

communication with processor blades. A given FLIC connects to Fabric Channels 2, 3, 4 & 5 of the 
fabric, with each of the four channels connected to a 10Gbit Ethernet core implemented in one of the 
FPGAs of the FLIC.  FPGA “U3” connects to two of the channels, while FPGA “U4” connects to the 
other two channels.  This allows a FLIC in slot 1 or slot 2 of a six-slot ATCA backplane to communicate 
with processor blades in slots 3, 4, 5 & 6.  The reader is reminded that a 1X mesh backplane is identically 
the same as a dual-star backplane at the six-slot size.  Most six-slot backplanes are 3X mesh with 

                                                      
1 TFAULT is normally not connected in most SFP adapters.  In the FLIC RTM all TFAULT pins of all eight SFPs 
are connected via isolating resistors to the corresponding G-row pin.  The FLIC connects FPGA “U1”, pin K32, to 
pin G, row 1 to allow for testing of SFPs that do implement TFAULT. 
2 On the FLIC pin E, row 2 of the upper RTM connector is wired to I/O pin P30 of the “U1” FPGA but the FLIC’s 
RTM does not connect.  This connection is reserved and should not be used. 
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connectivity as shown in Figure 9Error! Reference source not found.; the FLIC only connects to Mesh 
#1. 

 
Figure 9 – six slot 3X mesh connectivity 

 With two FLICs mounted in the two Hub slots (slots 1 and 2) of the 1X mesh, the connectivity of 
the FLIC then provides two 10G channels of communication to each of three blades (in slots 3,4 & 5), 
one 10G channel from each FLIC.  This allows for direct distribution of data across the blades by simple 
round-robin logic within the FLIC, as shown in Error! Reference source not found..  This is sufficient 
to allow copying the full bandwidth of all data being processed by each FLIC over the fabric at the 
original specifications as three 10Gbit Ethernet channels is sufficient to carry the 24Gbit aggregate 
bandwidth of the eight fiber optic inputs with each fiber running at 2Gbit/s.  In this architecture no Hub or 
Switch board is used in the ATCA shelf as the direct connections of the backplane map three of the four 
FLIC output channels to the fabric channels used by commercial processor blades in more traditional 
hub/switch ATCA implementations, with one of the fabric channels (2-1  1-1) connecting the two 
FLICs to each other. 

 

Figure 10 – distribution of 10G channels with two FLICs in Hub slots 
 

 Installation of the FLIC into payload slots is also possible.  In this case the 10Gbit Ethernet 
interfaces of the “U4” FPGA on fabric channels 1 and 2 naturally map to the correct channels for 
connection to hub/switch boards in the hub/switch slots, but the “U3” FPGA now connects to channels 
that are only available in a full-mesh backplane.  FLICs may be used in the more common dual-star 
ATCA backplanes.  Figure 11 shows the mapping of a commercial 14-slot dual-star ATCA backplane.  

Channel Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 FLIC

Fabric CH5 6‐1 6‐2 6‐3 6‐4 6‐5 5‐5 No Connect

Fabric CH4 5‐1 5‐2 5‐3 5‐4 4‐4 4‐5 U3 Eth2

Fabric CH3 4‐1 4‐2 4‐3 3‐3 3‐4 3‐5 U3 Eth1

Fabric CH2 3‐1 3‐2 2‐2 2‐3 2‐4 2‐5 U4 Eth2

Fabric CH1 2‐1 1‐1 1‐2 1‐3 1‐4 1‐5 U4 Eth1

FLIC1 FLIC2 BLADE1 BLADE2 BLADE3 BLADE4
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FLICs inserted into any of the payload slots would be able to use the two 10G channels connected to 
FPGA “U4” to drive data through the hub slots to processor blades in any other slot. 

 

Figure 11 – 14 slot, dual-star ATCA backplane.   
 

 The FLIC provides connections to both the primary and secondary Base Interface channels using 
zero ohm resistors.  The Ethernet interface of the LAPP IPMC module may be optionally connected to 
either Base Interface channel or alternatively the two Base Interface channels may simply be jumpered 
from one to the other.   
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3 FUNCTIONAL	OVERVIEW	

3.1 Basic	Features	
The FLIC receives data from eight fiber optic links, processes the data, re-formats the data to 

comply with the CERN S-Link protocol and sends the resulting information to the ATLAS readout 
system (ROS).  Data is expected to be formatted as records, where each record consists of a record 
header, some number of track data blocks, and a record trailer, as defined in the ATLAS Fast Tracker 
(FTK) documentation and copied here as Figure 12. 

 
Figure 12 – Overall format of input data in the FTK system. 

 

Within FTK, the output of the Second Stage Boards (or SSBs) is the input to the FLIC.  The 
board design, however, is sufficiently generic to allow use of the FLIC as a general fiber-ATCA interface 
block.  All track data received from the SSB boards initiates a per-layer coordinate lookup from SRAM 
data tables in the FLIC.  The coordinate data is merged with the SSB data to form a complete record.  
That record is then reformatted into S-Link format for compatibility with ATLAS requirements and 
transmitted over the output fiber optic links to the ROS buffers of the ATLAS DAQ.  Two Pipeline 
FPGAs (“U1” & “U2”) perform this function. 

An internal mesh of high speed serial connections connects the two Pipeline FPGAs to two 
ATCA Interface FPGAs (“U3” and “U4”).  As records are processed in the Pipeline FPGAs, a selected 
subset of the records is copied over the internal mesh to the ATCA Interface FPGAs.  Each ATCA 
Interface FPGA assembles the eight record fragments (one from each fiber input, one per pipeline, four 
per Pipeline FPGA) into the fully assembled record.  DDR memories are used for the assembly process.  
When each assembled record is complete, it is transferred over the ATCA backplane to a processor blade 
or hub using 10Gb Ethernet (XAUI). 

Management of all board functions is accomplished through a slow control interface between the 
Management FPGA and the four main FPGAs.  Flash memory connected to the Management FPGA is 
used to hold main FPGA firmware images plus module ID data that is merged by the FLIC with the SSB 
data during the pipeline process. 
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3.2 Block	Diagram	
The overall architecture of the FLIC is given in Figure 13.  The control section is at the left, with 

the two pipeline FPGAs in the middle and the two ATCA Interface FPGAs at the right.  Connectivity is 
noted as orange text. 

 
Figure 13 – Overall block diagram of FLIC 

 

An internal mesh of SERDES connections, equal in bandwidth and number to the input and 
output SERDES connections, connect the two Pipeline FPGAs to the ATCA Interface FPGAs.  To 
complete the internal mesh, Pipeline FPGAs U1 and U2 connect a GTX bank to each other, plus ATCA 
Interface FPGAs U3 and U4 connect a GTX bank to each other.  At the present time this additional 
connectivity is unused.  The full internal mesh of FPGA serial connectivity is shown, along with which 
clock references are associated with each GTX bank, in Figure 14.  The specifics of clock generation are 
detailed later in this document. 

 

Figure 14 - Internal SERDES mesh connectivity within the FLIC 
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3.2.1 Data	object	terminology	
It is at this juncture necessary to define a few terms that will be used throughout this document to 

describe various data structures that flow throughout the FLIC.   
 

 The term “event” shall be avoided throughout this document as it is understood that this 
term is reserved for defining experiment-wide data objects that contain data from all the 
detector systems within ATLAS. 

 A data object entering the FLIC Pipeline FPGAs from the SSB shall always be referred to 
as a record.  As previously stated in Section 3.1, above, each record consists of a record 
header, some number of tracks, and a record trailer. 

o These terms will be used throughout the description of the Pipeline FPGAs as 
shown in Figure 13, Figure 15 and throughout chapter 5, DATA PROCESSING 
PIPELINE FIRMWARE. 

 As the records flow through the Pipeline FPGAs, some subset of records is selected for 
copying to either or both ATCA Interface FPGAs. Such copied records are referred to as 
tagged records.   

 Each ATCA Interface FPGA refers to the received tagged records as fragments. 
 Sets of fragments with the same Level 1 ID are collected together by the ATCA Interface 

FPGA into assembled fragments. 
o The terms fragment and assembled fragment are used throughout this document 

as seen in Figure 16, Figure 27 and all of chapter 6, ATCA Interface Firmware. 
 Assembled fragments, when complete, are then transmitted as a series of UDP Packets 

over the backplane to processor blade(s). 
 As each FLIC receives information from only half of FTK, a processor blade must merge 

together the assembled fragments from two different FLICs using the dual-star nature of 
the ATCA backplane as shown in Figure 10 and Figure 11. 

o Once the two assembled fragments with the same Level 1 ID index have been 
merged within the processor blade, only at this point should the data be referred 
to as an event fragment, as it is at this point that the data block contains all the 
information from the FTK detector, but not any data from the rest of ATLAS. 

 

3.3 Clock	Domains	within	the	FLIC	
Multiple clock domains exist within the FLIC.  Three of those, used in the main data flow, are 

shown in Figure 14.  The generation and distribution of the clock domains is accomplished using a series 
of CDCM61004 reference clock generator chips with fanout logic.  Each CDCM61004 uses its own local 
25MHz reference crystal to generate a variety of frequencies based upon the state of various control lines 
driven from the main FPGAs.  The list of clock generators is below.  The details of which frequencies 
each can generate is found in Section 1. 

 Clock generator #1, controlled by FPGA “U3”, provides the reference for all front panel 
and inter-FPGA serial links, the “SFP REFCLK” (typically 125.0MHz for 2Gb/sec 
operation or 187.5MHz for 3Gb/sec). 

 Clock generator #2, controlled by FPGA “U1”, provides the reference for all S-Link 
(RTM) serial links (typically 125.0MHz, corresponding to 2Gb/sec serial rate). 

 Clock generator #3, controlled by FPGA “U4”, provides the reference for the 10Gb 
Ethernet serial links to the ATCA backplane (typically 156.25MHz). 
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 Clock generator #4, also controlled by FPGA “U4”, provides the reference for all DDR 
memories, typically 200MHz. 

 The PIC processor is connected to a 25MHz oscillator that it internally multiplies with a 
PLL to 80MHz.  The 25MHz is required by the Ethernet PHY.  The Management FPGA 
also generates, and forwards to all four Virtex-6 FPGAs, an 80MHz clock that is used for 
the slow control bus.  

o An internal clock multiplier is used in the Pipeline FPGAs to generate the 
internal pipeline processing clock of 200MHz.  Generating the pipeline clock 
from the 80MHz decouples that clock from the DDR clock that may change 
dependent upon how the DDR interface core is designed. 

3.4 DDR	Memory	Buffers	
Each of the four main FPGAs has a single 1Gbit MT41J128M16JT-125 DDR RAM connected 

using a soft core.  The DDR connected to each of FPGAs U1 and U2 is reserved for future use.  The DDR 
bandwidth (12.8 Gb/s) is not sufficient to buffer all data from all SSB streams simultaneously.  The DDR 
memories attached to FPGAs U3 and U4 are used for record assembly and buffering from the internal 
mesh prior to transmission of records to the ATCA backplane.   

3.5 Data	Processing	Pipeline	Overview	
The internal gigabit transceiver, or GTX, blocks of bank 112 in both U1 and U2 are connected to 

the front panel SFPs and are driven by the same clock reference.  The serial rate can be changed by a 
combination of GTX core settings and reprogramming of the clock reference, although reloading of 
firmware is typically required to change speeds.  The FLIC has been tested at rates of 2Gbit/s and 3Gbit/s.  
A pipelined series of state machines process the data records received in stepwise fashion and present the 
final data to CERN S-Link cores in the GTX SERDES blocks of bank 116 of U1 and U2.  The eight serial 
streams from GTX116 of both U1 and U2 are connected to a second bank of SFP modules mounted on a 
rear transition module (RTM).  The RTM SERDES links have a separately programmable clock reference 
so that the input and output links may be run at different line rates.  The overall flow of the data 
processing pipeline is described by Figure 15. 

 



FLIC User’s Manual  

  

JTA, MBO  Page 16 of 69  p

 

Figure 15 - General data pipeline architecture used in U1 and U2 
 

Data enters at the left.  FIFO buffers are placed between each state machine to allow for clock 
domain crossing and record management.  The Core Crate Receiver section locks onto the data format as 
provided by the SSB and checks data consistency.  The Data Merge machine looks up module ID data 
from the SRAM and merges that with the original SSB data to make the final record.  The S-Link format 
machine wraps the SSB data into correct S-Link format, after which the records are transmitted to the 
DAQ.  At the Data Merge level, selected records may be transferred over the internal SERDES mesh to 
the ATCA Interface FPGAs. 

3.6 ATCA	Interface	Overview	
The two ATCA Interface FPGAs are tasked with assembling record fragments from the eight 

independent pipelines into FLIC-wide records and then transmitting those assembled records over the 
ATCA backplane to commercial processor blades.  It is understood that a FLIC-wide record is, itself, only 
a fragment of a full FTK event as there are multiple FLICs in FTK.  The assembly of FLIC-wide events 
into full FTK event fragments is presumed to be accomplished in software.   

 Each SSB record is tagged with an identifier called the L1 ID.  As the record is processed in the 
Pipeline FPGA, the L1 ID of the record is compared against a selection mask to determine whether the 
event should be copied to the ATCA Interface FPGA.  The selection mask is simple and selection of all 
records is allowed.  Records so selected are marked with bits in the Tag FIFOs of Figure 7.  The Tag 
FIFO bits indicate whether the record is to be copied to ATCA Interface FPGA “U3”, ATCA Interface 
FPGA “U4”, or both.  This tagging is done by the Core Crate Receiver machine.  When each record 
fragment has been completely received and is being read out by the Data Merge machine, any tagged 
record is copied to Event FIFOs and transmitted across the internal mesh. 
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 Each ATCA Interface FIFO receives eight SERDES links from the internal mesh, matching the 
number of fiber optic inputs to the FLIC board.  The internal mesh supports double the bandwidth of the 
inputs such that all data could be copied to either “U3” or “U4” alone without loss, but the bandwidth of 
the DDR memory, which is required to a single ATCA Interface FPGA is insufficient to carry the total 
input bandwidth of the FLIC.  The general design of ATCA Interface FPGA is shown in Figure 16. 

 

 

Figure 16 – Block diagram of ATCA Interface FPGA logic 
 

 As the fragments are received they are sorted by L1 ID number and copied into assembly regions 
in the external DDR memory buffer.  An Assembly Data Table, implemented as a quad-port RAM 
internal to the FPGA, keeps track of the state of each assembly region.  The table also stores data that will 
form the Assembly Header.  When a given assembly region is fully assembled, one of the two Assembly 
Read Machines are selected to retrieve the assembled record.  The Assembly Read Machine collects the 
record from the DDR using as many reads as required and passes the completed package to the UDP 
Packet Generator. The UDP Packet Generator receives the completed assembly data package and parses it 
into UDP packets.  If the assembly data is larger than a single packet, the UDP Packet Generator will used 
IP packet fragmentation to ensure that each assembly is properly received by the processing blade.  
Packets are handed off to the 10GbE interface via an intermediate domain crossing FIFO.  It then sends 
the UDP packets to the processing blades over the ATCA backplane.  Two 10GbE Interfaces are 
implemented in each ATCA Interface FPGA, allowing the FPGA to send data to two different processors. 

 Within the FPGA firmware design, the data bus bandwidth is stepped up in stages from 2Gbps 
per channel at the SERDES input to 21.3Gbps by the time it reaches the Fragment Assembly Machine.  
There are two reasons for this: 
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1) Unlike in the Data Pipeline FPGAs, the ATCA Interface FPGAs have a variable number of 
parallel data pipelines depending at the different processing stages of the design.  At the 
SERDES interface, there are 8 receiver pipelines.  However, the sorting process permits only 
a single data pipeline, requiring at minimum a data handling rate of 16 Gbps.  While the DDR 
cannot sustain this speed, the logic can still process a burst of data at this rate   as a result of 
the large DDR write buffer implemented in and the Fragment Receive FIFOs provided on 
each input link.  These buffers and FIFOs are implemented FPGA RAM and run at the full 
processing bandwidth. 

2) The Fragment Assembly Machine cannot immediately commit to writing a fragment to the 
DDR.  It must wait a few clocks for a decision from the Assembly Table Management 
Machine to begin processing the fragment, prior to both state-machines proceeding in parallel 
with their respective tasks.  The amount of time it takes to process a fragment depends on a 
few factors discussed in Section 6.  The high data bandwidth allows it to compensate for this 
processing overhead. 

3.6.1 Spy	Buffer	
The design of the ATCA Interface FPGAs, combined with the primitive record selection logic of 

the Pipeline FPGAs, implements the “Spy Buffer” requirement of FTK.  Various subsets or all of the 
input data as received by the FLIC may be collected and transmitted to the processor blades to allow for 
analysis without affecting the bandwidth of the path from SSB to ROS.  There is no facility within the 
current firmware to select or change the point in the pipeline at which the data is picked off.  Verification 
of the data transformations that occur within the FLIC by each state machine may be separately 
accomplished by use of the slow control Monitoring FIFOs and counters. 

3.7 Flow	Control	
Use of a 200MHz clock for the internal processing pipeline and the 16-bit width of the internal 

buses defines that each pipeline of the FLIC is able to process data at 3.2Gb/sec.  Thus, for the expected 
data input rate of 2Gbits/sec s the pipeline should never be overrun by the input data stream.  On the back 
end, however, no such guarantee exists.  Flow control from the S-Link interface is monitored and 
propagated backwards through the FLIC.  Whenever the S-Link signals “XOFF”, or if any internal FIFO 
buffer fills to greater than 3/4th full, an “XOFF” message is sent out the front panel port of the FLIC.  The 
“XON” message to clear the “XOFF” is not sent until none of the FIFOs within that pipeline are asserting 
the programmable full flag and the back-side S-Link is also no longer asserting “XOFF”. 

The size of a record as sent to the ROS is different from that received from the SSB due to the 
multiple modifications to the data that occur within the FLIC processing pipeline.  Some header/trailer 
information used by the FLIC to synchronize to the SSB data stream is stripped, whereas the FLIC also 
adds Module ID information in the Data Merge process and S-Link header/trailer information in the S-
Link formatting process.  Because of this the data expansion percentage is not fixed but is due to the 
number of tracks within the record.  

Breaking the record into header, track and trailer components the net effect of the entire pipeline, 
including S-Link, is as follows: 
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 Header information per record increases from 14 sixteen-bit words to 18 sixteen-bit words 
per record, or 28.6%. 

 Track information per track increases from 20 sixteen-bit words to 44 sixteen-bit words 
per track, or 120%. 

 Trailer information per record increases from 16 sixteen-bit words to 18 sixteen-bit words 
per record, or 12.5%. 

Knowing the above a graph can be generated showing the maximum achievable input record rate as a 
function of the number of tracks in the record versus the output record rate as a function of the number of 
tracks in the record.  In order to generate such a graph the differentiation between line rate and payload 
rate must be understood.  When a rate of 2Gb/sec is specified, this is the line rate, or the actual bit rate on 
the fiber.  However, the SERDES blocks use 8b/10b encoding so the payload rate is 8/10 of the line rate, 
or 1.6Gb/sec.  Similarly, 10Gb Ethernet links on the ATCA backplane consist of four differential pairs, 
each with a line rate of 3.125Gb/sec but a payload rate of 2.5Gb/sec. 

 

Figure 17 – Estimated FLIC record processing rates with 2Gb/sec input and output rates 
 

Figure 17 shows the estimated record processing rate of the FLIC at the input side, through the 
pipeline, at the output and at the Module ID (SRAM) for various numbers of tracks in each record.  As 
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can be seen the dominant feature is the expansion of the record size as it goes through the FLIC from the 
addition of the Module IDs and addition of S-Link header/trailer.   

The SERDES links of the FLIC are capable of running faster than 2Gbit/sec.  It is understood that 
the FPGAs of the SSB are of similar nature to that of the FLIC and likely could also run at a faster rate.  If 
we hypothesize that future developments in S-Link may at some point allow the use of a 3Gbit/sec line 
rate, the output rate is still the dominant factor in total system speed due to the percentage-wise expansion 
of the data.  If 3Gbit/sec line rate is assumed the output rate curve of Figure 17 rises much closer to the 
other rate curves, crossing the 100KHz line at 33 tracks/record instead of the current 22 tracks/record, but 
is still slower than the other three curves. 

3.8 Secondary	Parallel	Mesh	
In addition to the high speed serial mesh described in section 3.2, a secondary mesh of FPGA-to-

FPGA connections is provided.  Each main FPGA has an 8-bit unallocated bus of connections to every 
other main FPGA.  In many cases the individual wires can be considered low quality differential pairs but 
no specific effort was made in board layout to ensure impedance or matched delay.  The expected use of 
these lines is as excess connections that may be of value at some future point, either to implement a new 
function or to compensate for a broken solder joint.  This secondary mesh has no termination other than 
that which can be set by the FPGAs themselves. 
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4 CONTROLLING	THE	FLIC	
The FLIC implements five FPGAs on a shared slow control bus as shown previously in Figure 3 

(repeated here for convenience).  Access to the board for control or monitoring purposes is controlled by a 
small Management FPGA that processes read/write cycles from the PIC microcontroller.  For 
compatibility with the ATCA standard an IPMC module connects to the PIC via a serial bus for sensor 
and monitoring requirements.  At some future point the IPMC module may evolve to the point where the 
microprocessor of the IPMC may be the preferred control point, so the expansion bus of the IPMC is also 
connected to the Management FPGA. 

 

 

Copy of Figure 3 

 

The Management FPGA firmware expects to receive single read/write transactions containing both 
address and data.  The input side of the Management FPGA is a time-multiplexed address/data bus that is 
16 bits wide.  

4.1 UDP	Slow	Control	Packet	Structure	
The FLIC uses a simple packet structure for the slow control communication path between the 

FLIC's front panel Ethernet port and a host computer.  The current implementation sends UDP/IP packets 
but may be modified to support TCP/IP.  Irrespective of the Ethernet protocol, the data payload sent by 
the host or the FLIC is as shown in Table 2.  The orange region is a fixed size header that is included in 
all transactions.  The green region is a variable size data portion that is only included when necessary 
based on the Command word in the header. 
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ADD0 Address(15:0) - Lower Bits 
SIZE Size(15:0) 
STAT Status(15:0) 
DATA0 Data Word 0 (15:0) 
… … 
DATA25
5 

Data Word 255 (15:0) 

Table 2 – UDP packet structure used by the FLIC 
 

The slow control protocol is a master/slave interface controlled by the host computer.  The host 
sends a command to the FLIC and waits for a response.  The FLIC never initiates a slow control 
transaction but it always sends something in response to every command.  When the FLIC receives a 
packet, it inspects the header for a valid combination of Target, Command, Address, and Size.  (The host 
always sends a Status word of zero.)  If the header is invalid, the FLIC will respond with a packet 
consisting only of a copy of the received header with the Status word changed to one of the error values 
defined in the Appendixes of this document.  The FLIC does not attempt any further processing of the 
command if the header is invalid. 

If the FLIC receives a valid header, firmware within the PIC microcontroller performs the 
requested operation and returns a response packet.  The response will contain a copy of received header 
and will append a data portion if necessary. 

4.1.1 Physical	vs.	Logical	Addressing	
 When software forms a command packet to the FLIC, the target destination field is defined as the 
logical device number that is being accessed.  Within the PIC firmware the logical device number indexes 
to a table selecting a 4-bit physical device number (or Chip Select) that is asserted by the PIC to the 
Management FPGA, and also the access method. 

 The physical address selects which device within the FLIC that the transaction is aimed at, as 
summarized in Figure 18.  There are five codes for registers within FPGAs, four codes for the four flash 
RAM chips, and a few codes for accessing the memories (SRAM and DDR) directly connected to the 
main FPGAs. 
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Figure 18 – Physical Device (chip select) map of the FLIC 
 

4.1.2 Address	Extension	and	access	methods	
Different physical devices on the FLIC require different size address buses, but the communication 
between the PIC and the Management FPGA is limited by the PIC’s hardware design to a 16-bit 
multiplexed address/data bus.  Access to the full address range of the various memory structures is 
accomplished through the use of address extension registers in both the Management FPGA and the main 
FPGAs.  Each logical address entry in the lookup table of the PIC program contains an access method 
value that defines how the PIC will utilize the address extension registers.  This is all done in PIC 
firmware and is invisible to user software; none the less the addressing scheme must be documented to 
allow future developers to understand the underlying architecture. 

 As shown in Figure 19, the Management FPGA implements two address extension registers, one 
for the FPGA address bus and one for the Flash RAM address bus.  Each of these registers is written to by 
the PIC firmware when the Chip Select code from the PIC indicates that the cycle is to one of these 
physical objects.   
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Figure 19 – Address Extension implementations 
 

 A second level of address extension is implemented within the main FPGAs.  The 20-bit address 
asserted by the Management FPGA to the main FPGA is interpreted as containing two fields.  The upper 
4 bits are the secondary device select and the lower 16 bits are the actual address.  The secondary device 
select field is used to determine whether the transaction is directed towards the internal registers of the 
main FPGA, or to one of the devices “behind” the main FPGA (an SRAM or the DDR).  The 
interpretation of the secondary device select is shown in Table 3. 

Secondary device select code (binary) Transaction destination 
0000 Internal register 
0001 External SRAM 1 
0010 External SRAM 2 
0011 External SRAM 3 
0100 External SRAM 4 
1010 Broadcast to all four SRAM (writes only) 
1101 External DDR memory 

Table 3 – main FPGA sub-selection coding 

4.1.3 Pipeline	vs.	processor	access	to	SRAMs	of	Pipeline	FPGAs	
The two main FPGAs with external SRAM are intended to run as fast pipeline processors that 

continuously read data from the SRAMs as data is processed.  An internal register controls access to the 
SRAMs by a control bit that selects whether the SRAM address and data buses are made available to the 
slow control (default at power up) or whether they are available to the pipeline logic.  The normal method 
of usage is to load the SRAMs with lookup data over the slow control interface, then hand over control of 
the SRAMs to the pipelines when initialization is complete. 
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4.1.4 Details	of	access	methods	
As noted above the PIC firmware internally maps each of the various logical device numbers to an 

access method using an internal table.  The defined access methods align with the secondary addressing 
requirements: 

 Access method #0 simply uses the lower 16 bits of the address field of the packet as the address 
to be asserted throughout the transaction.  This method is used for accessing registers within the 
Management FPGA. 

 Access methods #1 and #2 are intended for use with the Flash RAMs connected to the 
Management FPGA.  These RAMs are each 128Mbits in size, accessed in 16-bit words.  Thus a 
23-bit address is required.  In these modes the PIC performs a dual-cycle transaction to first set 
the value of the Flash Memory Address Extension register within the Management FPGA, and 
then to access the selected Flash RAM where the lower 16 bits of the RAM address comes from 
the lower 16 bits of the address within the transaction and bits 22:16 come from the Flash 
Memory Address Extension register. 

o In access method #1 the upper 16 bits of the address within the transaction are ignored 
and the Flash Memory Address Extension register is set explicitly to zero; the lower 16 
bits come from the UDP packet. 

o In access method #2 bits 22:16 of the 32-bit address in the packet are stored to the Flash 
Memory Address Extension register prior to accessing the Flash RAM. 

 Access methods #3 and #4 are designed for register-level access within the main FPGAs.  The 
Chip Select code, derived from the logical address, selects which of the FPGAs will be targeted.  
The address bus between the Management FPGA and the main FPGAs is a 20-bit object, and 
thus the Management FPGA also implements an FPGA Address Extension Register akin to the 
Flash Memory Address Extension register used in methods #1 and #2.   

o In access method #3 the upper 16 bits of the address within the transaction are ignored 
and the FPGA Memory Address Extension register is set explicitly to zero; the lower 16 
bits come from the UDP packet.  This mode is intended to access registers within the 
main FPGAs. 

o In access method #4 bits 19:16 of the address within the transaction are stored to the 
FPGA Memory Address Extension register prior to accessing the main FPGA; bits 15:0 
of the address come from the UDP packet.  This mode is intended to support single 
read/write transactions of a diagnostic nature to the various memory elements connected 
to the main FPGAs. 

 Access method #5 is intended for general purpose use to communicate with any of the memory 
elements connected to the main FPGAs.  In this method the FPGA Address Extension register of 
the Management FPGA is set to the correct values based upon the lookup from the logical device 
number so that the correct memory is selected.  The upper 16 bits of the address in the packet are 
written to the FPGA Memory Address Extension register of the selected main FPGA, and then 
the transaction occurs with the lower 16 bits of the address in the packet asserted as the address.  
In short, this provides a facility to use the full 32-bit address within the packet in each main 
FPGA. 

4.2 Slow	Control	Commands	
Table 4 summarizes the legal combinations of commands and targets within the FLIC.  It also lists the 
size of the header and data sections of packets sent between the host computer and FLIC for each packet 
type.  All FLIC operations use 16-bit data.  Therefore, the number of words means the number of 16-bit 
integers. 
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Host Packet FLIC Response 
Command  Cmd 

# 
Header 
Words 

Data 
Words 

Header 
Words 

Data 
Words 

Valid Target Destinations within FLIC 

cmdRead  0  6  0  6  1  PIC, FLASH, FPGA, SRAM 

cmdWrite  1  6  1  6  0  PIC, FPGA, SRAM 

cmdSet  2  6  1  6  0  PIC, FPGA 

cmdClear  3  6  1  6  0  PIC, FPGA 

cmdErase  4  6  0  6  1  FLASH 

cmdArrayRead  5  6  0  6  SIZE  PIC, FLASH, FPGA, SRAM 

cmdArrayWrite  6  6  SIZE  6  0  PIC, FLASH, FPGA, SRAM 

cmdArraySet  7  6  SIZE  6  0  PIC, FPGA 

cmdArrayClear  8  6  SIZE  6  0  PIC, FPGA 

cmdArrayErase  9  6  0  6  SIZE  FLASH 

cmdFifoRead  10  6  0  6  SIZE  FPGA 

cmdFifoWrite  11  6  SIZE  6  0  FPGA 

cmdAdcScan  12  6  0  6  0  PIC 

cmdAdcSingle  13  6  0  6  0  PIC 

Table 4 – Supported command/target combinations in the FLIC 
 

The individual commands are described next: 

 cmdRead - This operation reads a single 16-bit value from the specified address.  The header 
SIZE field should always equal 1.  The header DEST field can be any legal value. 

 cmdWrite - This operation writes a single 16-bit value to the specified address.  The header SIZE 
field should always equal 1.  The header DEST field can be the PIC, any SRAM, or any FPGA in 
the FLIC. 

 cmdSet - This operation modifies the 16-bit value at the specified address by setting all bits that 
are high in the packet's single 16-bit data value.  The other bits are not modified.  The header 
SIZE field should always equal 1.  The header DEST field can be the PIC or any FPGA in the 
FLIC. 

  cmdClear - This operation modifies the 16-bit value at the specified address by clearing all bits 
that are high in the packet's single 16-bit data value.  The other bits are not modified.  The header 
SIZE field should always equal 1.  The header DEST field can be the PIC or any FPGA in the 
FLIC. 

 cmdErase - This operation erases the flash block containing the specified address.  The header 
SIZE field should always equal 1.  The header DEST field can be any Flash in the FLIC.  A flash 
block is 65,536 (0x10000) words.  The returned value is the contents of the status register of the 
flash chip following the block erase attempt. 

 cmdArrayRead - This operation reads a series of 16-bit values starting from the specified address.  
The header SIZE field must be less than or equal to MAX_DATA_WORDS.  The header DEST 
field can be any legal value. 

 cmdArrayWrite - This operation writes a series of 16-bit values starting at the specified address.  
The header SIZE field must be less than or equal to MAX_DATA_WORDS.  The header DEST 
field can be any legal value. 

 cmdArraySet - This operation modifies a series of 16-bit values starting at the specified address 
by setting all bits that are high in the packet's corresponding 16-bit data value.  The other bits are 
not modified.  The header SIZE field must be less than or equal to MAX_DATA_WORDS.  The 
header DEST field can be the PIC or any FPGA in the FLIC. 
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 cmdArrayClear - This operation modifies a series of 16-bit values starting at the specified address 
by clearing all bits that are high in the packet's corresponding 16-bit data value.  The other bits 
are not modified.  The header SIZE field must be less than or equal to MAX_DATA_WORDS.  
The header DEST field can be the PIC or any FPGA in the FLIC. 

 cmdArrayErase - This operation erases a series of flash blocks starting at the specified address.  
The header SIZE field must be less than or equal both FLASH_BLOCKS and 
MAX_DATA_WORDS.  The header DEST field can be any Flash in the FLIC.  A flash block is 
65,536 (0x10000) words.  The returned values are the contents of the status register of the flash 
chip following each block erase attempt. 

 cmdFifoRead - This operation repeatedly reads a series of 16-bit values from the specified 
address.  The header SIZE field must be less than or equal to MAX_DATA_WORDS.  The 
header DEST field can be any FPGA in the FLIC.  However, the address must correspond to a 
FIFO access register or the return packet will simply contain SIZE copies of the same value. 

 cmdFifoWrite - This operation repeatedly writes a series of 16-bit values to the specified address.  
The header SIZE field must be less than or equal to MAX_DATA_WORDS.  The header DEST 
field can be any FPGA in the FLIC.  However, the address must correspond to a FIFO access 
register or the result is no different than a cmdWrite to the same address with the final value. 

4.3 Physical	Interface	between	PIC	and	Management	FPGA	
The PIC32 processor communicates using a 16-bit multiplexed address/data bus, plus a few 
direction/strobe lines, as defined in section 13 of the PIC32 manual, “Parallel Master Port”.  The PIC is 
configured in Master mode, using 16-bit data width (PMMODE<10> = 1).  The rest of the assumed 
settings are as follows: 

 The Chip Select control (PMCON<7:6>) is set to 01, enabling PMCS2 as an actual chip select. 
 Master Mode 2 (MODE<1:0> bits (PMMODE<9:8>) = 10) is assumed. 
 Pin polarities are set in the PMCON register such that all control signals (PMRD, PMWR, 

PMALL, PMALH, PMCS1 and PMCS2) are active high. 
 The WAITB control is set so that PMRD and/or PMWR are asserted coincident with PMCSx. 
 The WAITM control is set to that PMRD is asserted for no less than 3 clock cycles. 
 The WAITE control may be set to zero. 
 ADRMUX<1:0> are set to 11 so that the address and data bus are fully multiplexed. 
 No interrupts associated with the PMP are enabled. 

 

4.4 Secondary	methods	of	slow	control	
When the PIC performs a cycle to any device on the FLIC, the four CS lines are used by the 

Management FPGA to decode how to route the transaction.  The PIC is always the controller of the bus 
multiplexers through control registers within the Management FPGA.  The default case is that the PIC 
transaction will be forwarded to the appropriate external buses based upon the Chip Select code asserted 
by the PIC.  There are, however, other bus control scenarios that are supported. 

4.4.1 DMA	transfers	from	flash	RAM	to	main	FPGAs	
The PIC may yield control of the FPGA slow control and Flash RAM address/data buses to the 

internal state machines of the Management FPGA and then perform a register access to the Management 
FPGA to set up and then initiate a data transfer orchestrated by the state machines of the Management 
FPGA.  In this mode a set of registers within the Management FPGA act as a “command list”.  The PIC 
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first loads the desired “command list” and then initiates execution of the list by the internal list processor 
state machine of the Management FPGA.  Each list entry can do one of three things: 

 Read data from a range of flash RAM addresses and serially load the data into any or all of the 
main Virtex-6 FPGAs as a configuration (programming) action. 

 Read data from a range of flash RAM addresses and copy that data over the parallel interface to 
the SRAMs connected to either FPGA “U1” or FPGA “U2”, as a series of block transfers 
(“SRAM loader”). 

 Read data from a range of flash RAM addresses, interpreting that data as a set of (address, data) 
values, to load registers of a Virtex-6 in a controlled order (“register loader”). 

 

When using the DMA transfer capabilities of the Management FPGA, the PIC can monitor the operation 
by reading status registers of the Management FPGA.  These status registers indicate whether a given 
DMA machine is active or not, and whether the DMA transaction ended successfully or not. 

4.4.2 Use	of	the	DMA	engines	at	board	startup	
In normal operation within an ATCA shelf the FLIC only powers the Management FPGA, IPMC 

module and PIC processor until such time as the Shelf Manager of the ATCA shelf sends commands to 
the IPMC to tell the FLIC that it may turn on the rest of the board.  After power is applied to the main 
FPGAs they must be configured.  This is accomplished by using the “configurator” state machine to load 
firmware into the FPGAs.  After each main FPGA is configured and running, the SRAM lookup tables 
associated with the two pipeline FPGAs (“U1” and “U2”) must also be initialized.  This is accomplished 
by using the “SRAM Loader” state machine.  The “register loader” machine may similarly be used to 
initialize the firmware of the main FPGAs after the FPGAs have been configured. 

Slow control software may then perform partial, selective or complete initialization of the board 
at any time by appropriate use of the “command list” registers and the DMA engines.  A separate 
document that details the firmware of the Management FPGA provides full details of this operation. 

4.4.3 Support	for	future	expansion	
Two additional bus control architectures are supported by the Management FPGA to allow for 

potential needs in the future.  

1) The PIC may command the Management FPGA to completely tri-state all FPGA address and 
data lines, during which time the Virtex-6 FPGAs may communicate with each other over the 
parallel bus.  This mode is foreseen as providing a path for potential feature expansions in 
which processor blades within the ATCA shelf might communicate with the ATCA interface 
FPGAs “U3” and/or “U4”, and then through those FPGAs perform register I/O across the 
yielded slow control bus to the other FPGAs of the FLIC. 

2) The PIC may command the Management FPGA to interpret the expansion bus of the IPMC 
controller as address/data/CS lines, allowing for the future development of firmware within 
the IPMC to access registers of the Virtex-6 FPGAs and/or the flash RAMs.  The exact 
format of the IPMC expansion bus for this scenario has not been defined. 
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5 DATA	PROCESSING	PIPELINE	FIRMWARE	
This section will expand upon the overview provided in section 3.5 and specifically explain what 

each state machine in the pipeline does.  Flow control and error detection will also be detailed herein.  For 
convenience a copy of Figure 15 from section 3.5 is provided below. 

 

Copy of Figure 9 

5.1 Serial	interface	to/from	the	SSB	
The four SERDES GTX blocks of FPGA group 112 are used to both receive data from and send 

data to the SSB.  The GTX core is configured to use standard 8b/10b encoding with the K28.5 comma 
character (0xBCBC).  On the parallel side the data received is in 16-bit words; for a payload rate of 
2Gbit/sec, this means that 16-bit words arrive at 125MHz.  The GTX operates in clock resynchronization 
mode, meaning that the RX data will have randomly inserted comma bytes added as needed to 
continuously re-sync the receiver with the clock of the transmitter (SSB).  The four transmit sections of 
the FLIC are run using a common clock but a unique RX clock is extracted for each link of the GTX 
quad.  The raw data received by each link is stripped of commas and kept in proper byte order by a 
receiver state machine.  The TX side of the GTX is used to transmit flow control and status information 
back to the SSB.  A pseudo-random bit stream (PRBS) mode is available for link self-test. 

5.1.1 Reception	of	data	from	the	SSB	
The comma-stripped data from each link is written to a 1K deep, 18-bit wide FIFO.  The FIFO is 

read by the next state machine in the pipeline using the 200MHz clock common to all four pipelines.  
Data is written to the FIFO so long as the data is valid and the MOD_PRESENT signal from the SFP 
receiver is present.  Sixteen of the 18 bits of the FIFO are used for SSB data.  The extra two bits of the 
FIFO are used to hold “timing tag” bits that, if enabled, are set when the received data word is either 
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0x0000 or 0x5A5A respectively.  These “timing tag” bits are carried in the extra bits of every FIFO buffer 
as the record propagates down the pipeline and are used in concert with Chipscope logic analyzer cores to 
provide a data-specific trigger. 

It is expected that the “SFP Input FIFO” should normally be empty or nearly empty, as the Core 
Crate Receiver state machine that reads it runs at a faster clock rate.  If, however, the FLIC pauses data 
processing in response to flow control from the ROS, this “SFP Input FIFO” will fill.  While it is 
expected that the FLIC will pass the flow control message to the SSB, and the SSB will respond 
appropriately, a failure may result in the SFP Input FIFO becoming full.  At that point data is lost.  This 
condition sets a latch to inform the Core Crate Receiver machine that the incoming record is corrupted so 
that the Core Crate Receiver may flush the bad record and attempt to resynchronize after the SFP Input 
FIFO has been first reset by slow control and afterwards new data is received. 

5.1.2 Transmission	of	status	and	flow	control	to	the	SSB	
A control multiplexer is formed by the combination of two bits from the internal SFP_CTRL 

register of the FLIC and logic that monitors internal pipeline status.  This control multiplexer allows the 
front panel fiber optic links of the FLIC to send either a PRBS link test pattern or SSB flow control 
information.  At power-up the FLIC initializes to send SSB flow control data.  In this state the FLIC 
normally transmits the K28.5 comma character all the time unless there is a status change. 

5.1.2.1 Power‐on	handshaking	
At power-up or recovery from a system reset the SSB should assume that the FLIC data reception 

pipelines is in an initialization state requiring a fake “priming” record to synchronize the data reception 
state machines of the FLIC.  This FLIC requests this by sending a status word with bit 4 set.  When in this 
initialization state the FLIC will send the data value 0x0000 when not requesting a fake record. 

After initialization is complete software sets the FLIC into the ‘run’ state by changing control 
registers.  In the ‘run’ state the FLIC sends comma characters at all times until a status change occurs.  A 
single non-comma 16-bit word is transmitted whenever the state of the FLIC has changed.  Each bit of the 
16-bit status word is intended to be processed separately by the SSB, but the SSB is expected to process 
every bit each time a non-comma word is received.  Each time a non-comma word is received the new 
status of each bit should be recorded as a word will be sent each time the collected status vector changes.  
A single word may contain multiple simultaneous state changes in both directions.  Table 5 shows the 
currently implemented bits and what meaning should be imputed to receiving a word with the bit set as 
opposed to receiving a word with the bit clear.  Bit 4 is shaded to highlight that this bit should normally 
only be used during setup. 

Data bit in 
message to 
SSB 

Meaning to SSB if new word sent with bit set Meaning to SSB if new word sent with bit clear 

15:5 No meaning associated with these bits (reserved) No meaning associated with these bits (reserved) 
4 FLIC requests that SSB send fake “priming” 

record 
FLIC does not request fake “priming” record 

3 FLIC reports that there is a problem with the S-
Link interface to the ROS and thus the SSB should 
stop sending data soon as continued data will 
cause FIFOs to assert PROG_FULL. 

No S-Link interface problems at back end of 
FLIC.   

2 FLIC has detected spy buffer status requiring SSB FLIC no longer detects any spy buffer status 
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to cease transmission of data immediately. requiring SSB to cease transmission of data.  
1 FLIC has detected fatal overflow of SFP input 

FIFO.  Data has been lost. 
SFP input FIFO has been reset and is ready to 
receive data.   

0 FLIC has detected pipeline FIFO prog-full 
condition.  SSB should cease sending data 
immediately. 

All FIFO buffers within FLIC no longer prog-full.  

Table 5 – Summary of FLIC status bits to SSB 
 

It is common for the FLIC to send a status word of 0x0008 followed relatively quickly by a status 
word of 0x0009 when records are flowing at a high rate.  The 0x0008 has bit 3 set, indicating that XOFF 
has been received from the S-Link.  The following 0x0009 has bits 3 and 0 set, indicating that the FLIC 
has responded internally to the XOFF from the ROS, but was still processing records in the pipeline, so 
one or more internal pipeline FIFOs are now asserting PROG_FULL.  When the XON is received from 
the ROS a new status word of 0x0001 would indicate that the XOFF condition has cleared but one or 
more FIFOs is still PROG_FULL.  When the pipeline flushes in response to XON, a later word of 0x0000 
would follow the 0x0001 once all FIFOs hit PROG_EMPTY.   

If the SSB responded to the 0x0008 or 0x0009 by stopping in the middle of a long record, it may 
be necessary for the SSB to finish the record in progress in response to the status of 0x0001 in order for 
the FLIC to finish flushing all the records in the pipeline.  This is because each stage of the pipeline will 
not process until the FIFO buffer indicates that at least one full record is available for processing.  If the 
SSB does not respond to the status of 0x0009 quickly enough, the status may change to 0x000B because 
the SSB has overflowed the relatively small SFP input FIFO.  In general, the SSB should respond 
immediately to the value of 0x0009 and not wait until the end of the current record. 

5.1.3 PRBS	test	mode	
Multiplexer logic in each SERDES link, controlled by register bits, allows user to switch the TX 

side between the status/flow control data and a PRBS test data pattern.  Similarly, the RX logic contains a 
PRBS-based data checker that may be enabled to run in parallel with the usual FIFO logic.  The PRBS 
testing logic sends a test sequence of programmable length, broken into ‘chunks’ with a programmable 
number of comma characters sent between ‘chunks’.  When the total length is complete, the PRBS logic 
sends the value of 0x0000 for a few clocks (as 0x0000 is not a legal PRBS value) to re-seed the PRBS 
checking logic in the receiver.  Upon receipt of the 0x0000 characters, the next non-comma data value is 
used to seed a PRBS generator in the receiver.  After re-seeding, the PRBS data value generated by the 
receiver is compared against the values received from the fiber and any errors noted.  The PRBS test 
mode was used to test the bit error rate of the FLIC’s fiber interfaces to better than 1E-14 BER. 

5.2 FIFO	Buffers	in	the	pipeline	
The SFP Input FIFO connecting the SERDES RX logic to the Core Crate Receiver state machine is 

a simple first-word-fall-through FIFO buffer, as there is no understanding of data structure at the point of 
reception.  However, all other FIFOs connecting the state machines together after the Core Crate Receiver 
are Event-based FIFOs.  In this context, “event” is a generic term, identical to a record in FTK, used to 
describe a delineated block of data of unknown length.  The Event-based FIFO structure takes advantage 
of the 18-bit wide parity structure of the Xilinx FPGA Block RAM primitive to store boundary 
information along with the 16-bit raw data.  The Data Merge and SLINK formatter state machines wait 
for full records to be available in the FIFOs before beginning to process the information.  Thus, at any 



FLIC User’s Manual  

  

JTA, MBO  Page 32 of 69  p

given point, up to three records may be simultaneously processed by the pipeline (record “n” in the Core 
Crate Receiver, record “n-1” in the Data Merge and record “n-2” in the SLINK formatter). 

 The Event-based FIFO sub-design adds a small counter to the standard FIFO buffer, plus requires 
that the write-side state machine issue signals on the next-to-last (event tag) and last (event end) data 
words of the event to control the counter.  Similarly the read-side machine is required to assert an event 
read signal when it begins reading the event.  The Event-based FIFO asserts a signal event available if 
there are a non-zero number of complete events in the buffer.  Similarly, the event tag signal is saved in 
one of the excess bits of the block RAM, such that the reading machine receives the event tag bit on the 
next-to-last word of the event.  This simplifies the handling of events of variable size.  A generic control 
is passed in to each instance of the Event FIFO throughout the pipeline selecting the appropriate counter 
handling based upon whether the input clock is faster, the output clock is faster or both run at the same 
speed. 

5.3 The	Core	Crate	Receiver	
The Core Crate Receiver state machine verifies that the data being received is consistent with the 

FTK record format definition checks various fixed patterns in the data for correctness and performs 
simplistic comparisons upon the L1 ID values in the data to determine if records are to be tagged for 
copying to the ATCA Interface FPGAs.  As noted in Section 3.1, data is expected to be formatted as 
records, where each record consists of a record header, some number of track data blocks, and a record 
trailer, as defined in the ATLAS Fast Tracker (FTK) documentation.  The Core Crate Receiver (CCR) 
runs at 200MHz.  Data is read from the SFP input FIFO whenever it is not empty; every state of the CCR 
that processes a data word waits for the FIFO to become non-empty before proceeding. 

 The CCR machine copies the data from records that are correctly formatted to an output buffer, 
the CCMUX FIFO.  A variety of status flags and error flags are generated by the CCR machine that 
connect to various counters, registers and also to the FLIC Status Word sent to the SSB.  All of these bits 
are accumulated throughout the record and written as one word to the STATUS FIFO.  A third FIFO, the 
TAG FIFO, is written with one word indicating whether the L1 ID of the record matched any of the match 
patterns.  A 4th FIFO, the Address FIFO, is connected to the SRAM Lookup state machine.  See Figure 
20. 

 
Figure 20 – details of Core Crate Receiver (one of four in pipeline FPGA) 
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5.3.1 Initial	Synchronization	
The Core Crate Receiver achieves synchronization by looking for a fixed sequence of four data 

words that are found at the end of the record, in the Record Trailer.  The required sequence is 0xE0F0, 
0xA5A5, 0x5A5A then 0x0E0F.  All four words must match and be in the proper order to synchronize the 
machine.  A status signal NOT_IN_SYNC is asserted until the CCR has synchronized to the incoming 
data.  NOT_IN_SYNC is one of the conditions that is reported to the SSB through the status bits.  
Because the position of the fixed words has been relegated to the end of the record fragment, and not the 
beginning, the FLIC requires an initial “dummy” or “priming” record at initialization time.  Once the 
CCR has initially synchronized it proceeds to processing the Record Header. 

5.3.2 Error	Detection	in	the	Core	Crate	Receiver	
The Core Crate Receiver provides two sets of error signals to the rest of the pipeline logic.  A set 

of ‘live’ error bits persisting for only a single clock cycle are generated whenever the Core Crate Receiver 
has detected an error condition, for use in counters or with a Chipscope internal logic analyzer.  In 
parallel, an eight-bit Accumulated Status Vector is collected throughout the processing of a record.  At the 
end of each record the accumulated status vector is written into the Status FIFO such that there is one 
status byte for each record in the CCMUX data FIFO.  The Data Merge machine is expected to read the 
status byte, add its own status, and write a wider accumulated status value into its own Status FIFO when 
the Data Merge process is complete. 

The ‘live’ status bits asserted by the Core Crate Receiver are 

 NOT_IN_SYNC is asserted whenever the state machine isn’t synchronized to the data.  
This signal may persist for many clock cycles. 

 HEADER_ERROR is asserted when the Record Header is malformed. 

 TRACK_ERROR is asserted when the Track Header/Record Trailer word fails to match 
either pattern. 

 TRAILER_ERROR is asserted if one or more of the synchronization words in the Record 
Trailer are malformed. 

 TRUNCATION_ERROR is asserted if the record is too long and has been truncated. 
 

The Accumulated Status Vector is similar to the live status bits.  The exact format is shown in 
Table 6.  

Bit Meaning 
0 HEADER_ERROR was asserted. 
1 TRUNCATION_ERROR was asserted. 
2 The SFP FIFO was overrun (went full). 
3 TRACK_ERROR was asserted. 
4 Error in the diagnostic block of the Record Trailer. 
5 The record was tagged for copy to the Spy Buffer. 
6 Fixed word error in Record Trailer. 
7 The record contains a manufactured Record Trailer. 

Table 6 – Format of the Core Crate Receiver Status Byte 
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5.3.3 Processing	the	Record	Header	
The FLIC checks the first word of the Record Header against the fixed pattern 0xB0F0.  If the 

comparison fails, the CCR asserts the HEADER_ERROR bit and jumps back to initial synchronization.  A 
failure in the Record Header comparison will jettison the entire record. 

If the comparison is successful, then a fixed number of words equal to the expected length of the 
Record Header are copied from the SFP Input FIFO to the CCMUX FIFO3.  During the copy function, the 
words in the Record Header that are assumed to contain the L1 ID value are compared against two L1 ID 
Match registers in a simple bitwise AND as a form of simplistic pre-selection of which records are to be 
marked in the Tag FIFO for copying to either or both of the ATCA Interface FPGAs.  The expected 
format of the Record Header is shown in Table 7.  Data within the FLIC is always processed at 16-bit 
words. 

 
Table 7 – Expected format of Record Header from SSB 

 

As specified in the overall FTK data format document, the FLIC strips and throws away the first four 
words of the Record Header.  This could be done at the Core Crate Receiver level, but is deferred to the 
next step of the pipeline for purposes of supporting the copy of raw input data through the Spy Buffer 
path. 

5.3.4 Processing	Track	Data	
After the copy of the Record Header is complete the CCR checks to see whether the fixed bits of 

the next word are equal to those expected for a Track Header or for the first word of the Record Trailer; 
this is required because records with zero tracks are defined as acceptable.  If the pattern of the word 

                                                      
3 As of 20160826 the Core Crate Receiver does not copy the first four words of the Record Header (the 0xB0F0, 
0xCAFx, 0xFF12, 0x34FF) but does copy the rest.  This is because the words of the Record Header are interpreted 
by the higher level DAQ as part of the S-Link header and the header size the FLIC is required to report does not 
include these four values.  However, there is a competing specification that states that the Spy Buffer must save the 
unmodified raw input data, so at some future point the stripping of these four words may move from the Core Crate 
Receiver to the Data Merge machine. 

Bit=> 

Word 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

RH01

RH02

RH03

RH04

RH05 0

RH06

RH07

RH08

RH09

RH10

RH11

RH12

RH13

RH14 Reserved TIM [3:0]

Reserved Detector Event Type [7:0]

Reserved Level 1 Trigger Type [7:0]

Reserved

Reserved BCID [11:0]

Extended Level 1 ID [31:16]

Reserved

Extended Level 1 ID [15:0]

Run Number [15:0]

3 4 F F

Run Number [30:16]

F F 1 2

C A F x

B 0 F 0
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matches that of the Track Header, then the data following is assumed to be track data; if it matches the 
fixed pattern of the Record Trailer the machine jumps to a different set of states to process that 
information.  If the word fails to match either pattern, the TRACK_ERROR bit is set and the Core Crate 
Receiver terminates the record, writing Record Trailer of its own (see section 5.3.6).  The Track Header 
and following data is expected to follow the format shown in Table 8.  Track data consists of the Track 
Header (orange), the Pixel layer data (bright yellow) and the Silicon layer data (pale yellow). 

 

 
Table 8 – Expected format of Track data (header, pixel and silicon) 

 

 The Core Crate Receiver machine uses the “L” bit from the first word of the Track Header plus 
all 16 bits of the 2nd word of the Track Header (sector number) to develop a 17-bit SRAM Base Address.  
This SRAM Base Address is loaded into the Address FIFO (see Figure 20) and is used by the SRAM 
Lookup state machine to fetch Module ID data from the external SRAMs.  This is discussed further in 
Section 5.4. 

 As each track is processed the data is copied to the CCMUX FIFO without modification.  This 
process goes on ad infinitum until a Record Trailer is seen or a TRACK_ERROR occurs.  Because the size 
of the CCMUX FIFO is not infinite, the Core Crate Receiver implements a maximum number of tracks 

Bit=> 

Word 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

TH1 L

TH2

TH3 Res

TH4

TH5

TH6

TH7

TH8

TH9

TH10

TH11

TH12

IBLa 0

IBLb s

PL0a 0

PL0b s

PL1a 0

PL1b s

PL2a 0

PL2b s

SAx0 0 ReV

SSt0 0 ReV

SAx1 0 ReV

SSt1 0 ReV

SAx2 0 ReV

SSt2 0 ReV

SAx3 0 ReV

SSt3 0 ReVHIT1 WIDTH

HIT2 WIDTH

HIT1 WIDTH

HIT2 WIDTH

HIT1 WIDTH

HIT2 WIDTH

HIT1 WIDTH HIT1 COORDINATE [10:0]

HIT2 WIDTH HIT2 COORDINATE [10:0]

ROW_WIDTH ROW COORDINATE [11:0]

COL WIDTH COL COORDINATE [11:0]

ROW_WIDTH ROW COORDINATE [11:0]

COL WIDTH COL COORDINATE [11:0]

ROW_WIDTH ROW COORDINATE [11:0]

COL WIDTH COL COORDINATE [11:0]

ROW_WIDTH ROW COORDINATE [11:0]

COL WIDTH COL COORDINATE [11:0]

TRACK CURV

TRACK PHI0

TRACK COTTH

TRACK Z0

TRACK D0

TRACK CHISQ

ROAD ID [15:0]

Reserved ROAD ID [23:16]

Reserved Layer Map [11:0]

Reserved TF#  Tower Number

SECTOR NUMBER 

Res [3:0] B D A

HIT2 COORDINATE [10:0]

HIT1 COORDINATE [10:0]

HIT2 COORDINATE [10:0]

HIT1 COORDINATE [10:0]

HIT2 COORDINATE [10:0]

HIT1 COORDINATE [10:0]
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allowed per record (presently set via a hard constant to 144).  If the number of tracks in the record from 
the SSB exceeds this amount, the CCR machine asserts the TRUNCATION_ERROR flag and ceases 
writing to both the CCMUX and Address FIFOs, truncating the record at the end of the track.  Event 
processing resumes when the Record Trailer of the excessively long record is seen. 

 

5.3.5 Processing	Record	Trailers	
The Record Trailer is again identified by a word with the fixed value 0xE0DA.  As the Core 

Crate Receiver loops through tracks, each expected Track Header word is, if not identified as a Track 
Header, checked against 0xE0DA to identify the Record Trailer.  The Record Trailer has a “debug block” 
of indeterminate length, starting with the 0xE0DA key word and ending with a value of 0xE0DF.  
Immediately following the 0xE0DA and 0xE0DF words are words containing the expected length of the 
debug block, as seen in Table 9.  The Core Crate Receiver uses the first instance of the debug length to set 
a counter and copies that many words without processing as the debug data is indeterminate.  When the 
count elapses the data is checked for the 0xE0DF value and the 2nd copy of the debug length is compared 
against the first copy.  If the received debug block is of the incorrect length, the TRAILER_ERROR flag is 
set.  The Core Crate Receiver then stops reading data from the SFP FIFO and attempts to generate a 
correctly formatted trailer as best it can. 

 

 

Table 9 – Expected format of Record Trailer from SSB 
 

 If the “debug block” is the correct length, then words 5-12 of the trailer are copied to the 
CCMUX FIFO without processing.  

Bit=> 

Word 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

RTF1

RTF2

RTFD(1)

RTFD(N)

RTF3

RTF4

RTF5

RTF6

RTF7

RTF8

RTF9

RTF10

RTF11

RTF12

RTF13

RTF14

RTF15

RTF16

Length of Debug Block

0 E 0 F

5 A 5 A

A 5 A 5

E 0 F 0

Reserved

Reserved

Reserved

Reserved

Error Flag [15:0]

L1ID [31:16] 

Error Flag [31:16]

L1ID [15:0]

debug information

E 0 D F

debug information

Length of Debug Block

E 0 D A
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 Words 13-16 of the Record Trailer are the record-level synchronization data, the same that is used 
at initialization.  The Core Crate Receiver checks all four of these words at the end of the Record Trailer, 
asserting the TRAILER_ERROR condition if any mismatch is found.  If a mismatch of any of these words 
is found, the Core Crate Receiver stops reading data from the SFP FIFO and forcibly generates the rest of 
the Record Trailer correctly from this point on to make the CCMUX data as usable as possible. 

 

5.3.6 “Manufactured”	Record	Trailers	in	response	to	errors	
The Core Crate Receiver state machine responds to certain classes of errors by jumping into a set 

of states collectively referred to as Push_Trailer.  This set of states stops reading the SFP input FIFO, 
generates a pre-defined Record Trailer to terminate the record, and then transitions back to the initial 
synchronization states.  This has the effect of flushing data until a properly formatted Record Trailer is 
found, after which normal processing resumes.  Typically, this results in the remainder of the erroneous 
record being discarded plus the possibility of also completely flushing the next record to resynchronize. 

Whether the next record is lost to resynchronization or not depends upon which of the error 
conditions has occurred. 

 If a word expected to be either a Track Header or the first word of a Record Trailer fails to 
match either pattern, the FLIC will manufacture a complete Record Trailer and then attempt 
to resynchronize.  Thus, if the error was in a Track Header but the Record Trailer of the 
errant record is ok, no records will be lost.  Similarly, if the error was in first word of the 
Record Trailer, resynchronization will likely occur on the last four words of the Record 
Trailer of the errant record. 

o Events that have the wrong number of tracks (too few or too many) will flag the error 
on the next expected Track Header word. 

 Errors in the debug block of the Record Trailer will typically not lose a record as the 
necessary fixed values for resynchronization are later in the Record Trailer. 

 Errors in the fixed values of the Record Trailer that are used for synchronization will cause 
the loss of the next record. 

 

The FLIC attempts to mark any manufactured Record Trailer by setting bit 31 of the Error Flags 
word of the Record Trailer.  This bit is reserved by the firmware solely for the indication of a 
manufactured trailer and may not be used to indicate any other type of error.  The full map of error bits 
generated by the FLIC is found in a later section of this document. 

5.4 SRAM	Lookup	Machine	
The SRAM Lookup machine performs the lookup of FTK Module ID values from an external 

SRAM buffer for use in the Data Merge process as shown in Figure 21.  Each record processed by the 
Core Crate Receiver generates a single 17-bit base address for every track within the record.  These base 
addresses are extracted from the Track Header information and stored as they are extracted in the Address 
FIFO.  The SRAM Lookup machine continuously polls the Address FIFO and when a base address is 
available a lookup occurs. 
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Figure 21 – SRAM lookup machine detail 

 In response to receipt of a base address, the SRAM Lookup state machine uses the base address 
as the upper 17 bits of a 21-bit SRAM address that is asserted to an external CY7C1071DV33 (2,097,152 
x 16) static RAM.  These RAMs have an access time of 12ns and this is the limiting factor defining the 
overall speed of the pipeline.   

 Upon asserting the base address the SRAM Lookup machine performs 12 reads of the SRAM at 
sequential addresses, forming the lower four bits of the address from an internal counter.  These 12 words 
are then written into the SRAM FIFO and are used by the Data Merge machine to form the output record. 

5.4.1 Timing	Considerations	
Each record processed by the Core Crate Receiver has an indeterminate number of tracks.  Each 

track has a track header, as shown in Table 8.  There are 28 words in a track.  At a processing speed of 
200MHz (5ns per word), each track requires 140ns to process, meaning that a new word is loaded into the 
Address FIFO every 140ns.  In response to a base address the SRAM Lookup machine must fetch 12 
words from the SRAM.  An 80MHz clock is used for the SRAM Lookup machine (12.5ns period, to 
match the 12ns access time of the SRAM).  Reading 12 words thus requires 12*12.5, or 150ns.  In 
addition the SRAM Lookup machine requires a clock or two for setup of the data transfer. 

This difference between the track processing time and the SRAM lookup time means that as the 
record is processed the SRAM lookup machine slowly falls behind the Core Crate Receiver.  However, 
the Data Merge machine does not start to process the record until the record is completely stored in the 
CCMUX FIFO.  This means that the SRAM lookup gains time to catch up as the Merge machine 
processes the Record Header.  As shown in Table 7 the Record Header is 14 words long, requiring some 
70ns to process.  The SRAM lookup also recovers time to fetch additional information as the Data Merge 
machine processes the tracks previously looked up.  The net effect of this pipelining is that the SRAM 
lookup process only slows records with relatively large numbers of tracks; the break-even point is in the 
20s of tracks per record. 

5.5 Data	Merge	Machine	
The Data Merge machine reads the data from the CCMUX FIFO and the SRAM FIFO (output of 

the SRAM lookup machine), and merges the data together into the Merge FIFO for eventual transmission 
over S-Link to the ROS.  While the machine is running it reads the accumulated status byte from the Core 
Crate Receiver’s STAT FIFO, accumulates a 2nd byte of Merge machine status, and at the end of the 
record a 16-bit combined status is written to the Merge machine’s STAT FIFO.  The TAG FIFO is read 
by the Merge machine when processing of the record within the CCMUX FIFO begins; the value read 
from the TAG FIFO determines whether the data read from the CCMUX FIFO is copied verbatim into 
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either or both of the two SERDES links that run from the Pipeline FPGAs to the ATCA Interface FPGAs.  
This connectivity is summarized in Figure 22. 

 
Figure 22 – Overall connectivity of the Data Merge machine 

 

 The Data Merge waits for entire records to be stored in the CCMUX FIFO before it begins to 
process them.  As soon as a record is available (assertion of signal EVENT_AVAILABLE from the 
Event-based FIFO as described in section 5.2) the state machine starts pulling the record.  Unlike the Core 
Crate Receiver, where the machine must constantly poll the FIFO Empty signal to correctly cross clock 
domains, the Data Merge need only check that a record is available at record boundaries.   

 Immediately upon sensing that a record is available, the Merge machine copies the entire Record 
Header section of the data from the CCMUX FIFO to the Merge FIFO.  The L1 ID match flags from the 
Tag FIFO are sampled immediately and then the Tag FIFO advanced in preparation for the next record.  
The L1 ID match flags control the write enable to the input FIFOs of the two SERDES blocks that go to 
U3 and U4.  If the L1 ID match flag is set, the read enable of the CCMUX FIFO becomes the write enable 
to the FIFO of the SERDES link, causing a direct and un-modified copy of the input data to the Merge 
machine to be sent over the internal mesh to the appropriate ATCA Interface FPGA. 

 After counting off the number of words expected for the Record Header, the next word is checked 
to determine whether it is a Track Header or a Record Trailer, similar to the same comparison that is done 
in the Core Crate Receiver.  If a Track Header, the next set of words from the CCMUX FIFO is merged 
with the data from the SRAM FIFO to generate the reformatted track data with inserted Module ID 
values.  If a Record Trailer, the machine enters a set of states that copy the trailer and debug information.  
If neither match occurs, that should only happen if the record is so malformed that the Core Crate 
Receiver can’t reconstitute it with a manufactured trailer, the Merge machine simply copies the rest of the 
data from the CCMUX FIFO to the Merge FIFO verbatim until the end-mark of the record is seen in the 
CCMUX FIFO. 
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5.5.1 Merging	of	SRAM	data	with	track	data	
For each Track Header that is identified, the Merge machine copies the Track Header verbatim 

from the CCMUX FIFO to the Merge FIFO, and then checks to see if the SRAM FIFO is ready.  As noted 
previously in section 5.4.1, records with a sufficiently large number of tracks will at some point require 
the Merge machine to stop momentarily to allow the SRAM Lookup machine to catch up.  This is done 
on a track by track basis.  As soon as the SRAM data is available the Merge machine resumes. 

5.5.1.1 Merge	process	for	Pixel	layers	
The first four layers of the detector are Pixel (IBL) layers.  Each of these layers is defined by two 16-bit 
words in the CCMUX FIFO as shown in Table 10. 

 

Table 10 – Pixel/IBL layer data pre-merge 
The Merge machine reads one 16-bit Module ID value from the SRAM FIFO for each layer.  Since FTK 
has defined all ROS data to be 32-bit objects, additional padding is required to expand each pixel/IBL 
layer to four 16-bit words in the Merge FIFO as shown in Table 11. 

 

Table 11 – Pixel/IBL layer data post-merge 
 

All “reserved” fields are zero.  The rest of the data is a copy operation from one FIFO or the other. 

IBLa 0

IBLb s

PL0a 0

PL0b s

PL1a 0

PL1b s

PL2a 0

PL2b s ROW_WIDTH ROW COORDINATE [11:0]

COL WIDTH COL COORDINATE [11:0]

ROW_WIDTH ROW COORDINATE [11:0]

COL WIDTH COL COORDINATE [11:0]

ROW_WIDTH ROW COORDINATE [11:0]

COL WIDTH COL COORDINATE [11:0]

ROW_WIDTH ROW COORDINATE [11:0]

COL WIDTH COL COORDINATE [11:0]

IBLa

IBLb

IBLc 0

IBLd s

PL0a

PL0b

PL0c 0

PL0d s

PL1a

PL1b

PL1c 0

PL1d s

PL2a

PL2b

PL2c 0

PL2d s ROW_WIDTH ROW COORDINATE [11:0]

COL WIDTH COL COORDINATE [11:0]

Reserved Module ID[11:0]

Reserved

ROW_WIDTH ROW COORDINATE [11:0]

COL WIDTH COL COORDINATE [11:0]

Reserved Module ID[11:0]

Reserved

ROW_WIDTH ROW COORDINATE [11:0]

COL WIDTH COL COORDINATE [11:0]

Reserved Module ID[11:0]

Reserved

ROW_WIDTH ROW COORDINATE [11:0]

COL WIDTH COL COORDINATE [11:0]

Reserved Module ID[11:0]

Reserved
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5.5.1.2 Merge	operation	for	Silicon	layers	
Merging of the Silicon layer data is somewhat different because unique Module ID values are associated 
with both the Axial and Stereo portions.  Thus, each of the eight Silicon layer 16-bit words is expanded to 
a single 32-bit word in its own merge operation, as shown in Table 12 and Table 13. 

 

Table 12 – Silicon layer data pre-merge 
 

 

Table 13 – Silicon layer data post-merge 
 
After merging all tracks with Module IDs, when the record trailer is seen it too is copied from input to 
output.   

5.5.2 Merging	of	the	Record	Trailer	
When the Record Trailer is processed the Merge machine performs a second check on the debug 

block to verify that the start/end marks are present when expected and that the two copies of the length 
match.  If any errors are seen the Merge machine falls to the PULL_TO_END state and flushes the record 
as-is from that point.  If no error in the debug block is found then the Merge machine follows 
specifications and strips the last four words (0xE0F0, 0xA5A5, 0x5A5A & 0x0E0F) from the Record 
Trailer as these words only exist for Core Crate Receiver synchronization purposes. 

SAx0 0 ReV

SSt0 0 ReV

SAx1 0 ReV

SSt1 0 ReV

SAx2 0 ReV

SSt2 0 ReV

SAx3 0 ReV

SSt3 0 ReVHIT1 WIDTH

HIT2 WIDTH

HIT1 WIDTH

HIT2 WIDTH

HIT1 WIDTH

HIT2 WIDTH

HIT1 WIDTH HIT1 COORDINATE [10:0]

HIT2 WIDTH HIT2 COORDINATE [10:0]

HIT2 COORDINATE [10:0]

HIT1 COORDINATE [10:0]

HIT2 COORDINATE [10:0]

HIT1 COORDINATE [10:0]

HIT2 COORDINATE [10:0]

HIT1 COORDINATE [10:0]

SAx0a 0 ReV

SAx0b

SSt0a 0 ReV

SSt0b

SAx1a 0 ReV

SAx1b

SSt1a 0 ReV

SSt1b

SAx2a 0 ReV

SAx2b

SSt2a 0 ReV

SSt2b

SAx3a 0 ReV

SAx3b

SSt3a 0 ReV

SSt3b Reserved Module ID[12:0]

HIT1 WIDTH HIT1 COORDINATE [10:0]

HIT2 WIDTH

HIT1 WIDTH

Reserved Module ID[12:0]

HIT2 WIDTH

HIT1 WIDTH

HIT2 WIDTH HIT2 COORDINATE [10:0]

HIT1 WIDTH

HIT2 WIDTH HIT2 COORDINATE [10:0]

Module ID[12:0]Reserved

Reserved

HIT1 COORDINATE [10:0]

Module ID[12:0]

Reserved Module ID[12:0]

HIT1 COORDINATE [10:0]

Reserved Module ID[12:0]

HIT2 COORDINATE [10:0]

HIT1 COORDINATE [10:0]

Reserved Module ID[12:0]

HIT2 COORDINATE [10:0]

Reserved Module ID[12:0]
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5.5.3 Error	accumulation	and	forwarding	in	the	Merge	machine	
The Merge machine reads the accumulated status vector from the Core Crate Receiver from the STAT 
FIFO when processing of a record begins.  A merge-specific eight-bit accumulated status vector is 
generated during the Merge machine processing.  At the end of the record both status bytes are written to 
a pair of STAT FIFOs (one forwarding the Core Crate Receiver status and the 2nd holding the Merge 
status) to form a 16-bit accumulated status vector. 

The 16-bit accumulated status vector from the Merge machine is defined in Table 14. 

Bit Meaning Notes 
0 HEADER_ERROR was asserted. From CCR 
1 TRUNCATION_ERROR was asserted. From CCR 
2 The SFP FIFO was overrun (went full). From CCR 
3 TRACK_ERROR was asserted. From CCR 
4 Error in the diagnostic block of the Record Trailer. From CCR 
5 The record was tagged for copy to the Spy Buffer. From CCR 
6 Fixed word error in Record Trailer. From CCR 
7 The record contains a manufactured Record Trailer. From CCR 
8 Event tag from CCMUX received too early From Merge 
9 Merge machine had error, flushed record From Merge 

10 
Word expected to be Track Header or Record Trailer 

was neither (similar to bit 3) 
From Merge 

11 
0xEODF at start of debug block not found where 

expected.  (similar to bit 4) 
From Merge 

12 Two copies of debug block length did not match From Merge 
13 Record was copied to ATCA Interface FIFO U3 From Merge 
14 Record was copied to ATCA Interface FIFO U4 From Merge 
15 Merge FIFO asserted PROG_FULL during record From Merge 

Table 14 – Combined status vector from Merge machine 

5.6 S‐Link	Formatter		
The S-Link Formatter state machine is responsible for adding the S-Link header and S-Link footer to the 
data record from the Merge machine before forwarding the record to the GTX 116 (rear transition 
module) serial transmitter.  The S-Link header is a fixed set of data values as shown in Table 15. 

 

Table 15 – S-Link fixed header 
The S-Link formatter machine waits for a record to be available in the Merge FIFO before proceeding.  
Upon notification that the Merge machine has processed a full record the machine writes the 8 fixed 
words of the S-Link header and then proceeds to copy the data from the Merge FIFO.  The data from the 
Merge FIFO is copied verbatim into the RTM FIFO before entering the SERDES block containing the S-

SH01

SH02

SH03

SH04

SH05

SH06

SH07

SH08 Source Identifier ‐ Bytes 1‐0

Format Version Number ‐ Bytes 1‐0

Source Identifier ‐ Bytes 3‐2

Format Version Number ‐ Bytes 3‐2

Header Size ‐ Bytes 1‐0, Fixed Value 0x0009

Header Size ‐ Bytes 3‐2, Fixed Value 0x0000

Start of Header Marker ‐ Bytes 1‐0, Fixed Value 0x34EE

Start of Header Marker ‐ Bytes 3‐2, Fixed Value 0xEE12
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Link (HOLA) core firmware from CERN, as shown in Figure 23.  During the copy the number of words 
copied is counted. 

 

Figure 23 – S-Link Formatter and SERDES block connection details 
 

5.6.1 Error	masking	and	the	S‐Link	footer	
A top-level monitoring process collects an additional 16 bits of status information based upon the overall 
status of the pipeline.  These 16 top-level bits are merged with the 16 bits of status fed forward through 
the STAT FIFOs to create a 32-bit status vector within the S-Link Formatter.  The full 32-bit vector is 
given in Table 16. 

Bit Meaning Notes 
0 HEADER_ERROR was asserted. From CCR 
1 TRUNCATION_ERROR was asserted. From CCR 
2 The SFP FIFO was overrun (went full). From CCR 
3 TRACK_ERROR was asserted. rom CCR 
4 Error in the diagnostic block of the Record Trailer. From CCR 
5 The record was tagged for copy to the Spy Buffer. From CCR 
6 Fixed word error in Record Trailer. From CCR 
7 The record contains a manufactured Record Trailer. From CCR 
8 Event tag from CCMUX received too early From Merge 
9 Merge machine had error, flushed record From Merge 

10 Word expected to be Track Header or Record Trailer was neither (similar to bit 3) From Merge 
11 0xEODF at start of debug block not found where expected.  (similar to bit 4) From Merge 
12 Two copies of debug block length did not match From Merge 
13 Record was copied to ATCA Interface FIFO U3 From Merge 
14 Record was copied to ATCA Interface FIFO U4 From Merge 
15 Merge FIFO asserted PROG_FULL during record From Merge 
16 SFP input FIFO PROG_FULL status bit Collected at top 
17 CCMUX FIFO PROG_FULL status bit Collected at top 
18 SRAM FIFO PROG_FULL status bit Collected at top 
19 MERGE FIFO PROG_FULL status bit Collected at top 
20 RTM FIFO PROG_FULL status bit Collected at top 
21 COLLECTED_PIPELINE PROG_FULL (all above plus user bit) Collected at top 
22 U3_TAGGED_EVENT_FIFO PROG_FULL Collected at top 
23 U4_TAGGED_EVENT_FIFO PROG_FULL Collected at top 
24 S-Link LDOWN flag (inverted polarity, high is link down, set on falling edge) Collected at top 
25 S-Link LFF flag (inverted polarity, high is link FIFO full, set on falling edge) Collected at top 
26 S-Link is asserting XOFF Collected at top 
27 Core Crate Receiver not in sync Collected at top 
28 User defined status/error bit from register Collected at top 
29 User defined status/error bit from register Collected at top 

MERGE
FIFO

STAT
FIFO

S-Link
Formatter

RTM
FIFO

DATA
MUX

HOLA
CORE

PRBS

GTX
116

SERDES block



FLIC User’s Manual  

  

JTA, MBO  Page 44 of 69  p

30 Reserved  
31 Reserved for status collection failure bit S-Link formatter 

Table 16 – Full 32-bit accumulated status vector from FLIC 
This full 32-bit vector is bit-by-bit ANDed with a 32-bit ERROR MASK register to allow slow control 
selection of which bits are to be interpreted as errors as opposed to mere status.  The ATLAS data 
acquisition system allows for only two kinds of S-Link records: 

 “Normal” records have a status length of zero and may report no status of any kind; 

 “Error” records have a status length of exactly one and may report a single 32-bit word of 
combined status/error. 

Because there is no provision for status reporting within “normal” records the FLIC collects status on 
each record and allows the user to define which, if any, of the status bits constitutes an error condition 
requiring the trigger to read and analyze the 32-bit status vector. 

5.6.1.1 S‐Link	footer	for	records	with	no	error	
If the masking operation results in a record being declared as “normal” the S-Link Formatter issues a 
fixed-format S-Link footer as defined in Table 17. 

 

Table 17 – S-Link footer generated for “normal” records 

5.6.1.2 Added	data	and	S‐Link	footer	for	records	with	error	
If the masking operation results in an record being declared “in error” (non-zero result after AND), the S-
Link Formatter issues the 32-bit accumulated status vector as two added words after the Record Trailer 
and issues a fixed-format S-Link footer as defined in Table 18. 

 

Table 18 – S-Link footer generated for “error” records 

5.6.1.3 Special	S‐Link	Footer	generated	upon	failure	of	status	collection	subsystem	
If there is a failure in the status collection subsystem such that no accumulated status is passed forward 
through the STAT FIFOs, the S-Link Formatter generates a special version of the “error” footer in which 

SLF1

SLF2

SLF3

SLF4

SLF5

SLF6 Status Block Position ‐ Bytes 1‐0, Fixed Value 0x0001

Status Block Position ‐ Bytes 3‐2, Fixed Value 0x0000

Number of Data Elements, Bytes 3‐2

Number of Data Elements, Bytes 1‐0

Number of Status Elements ‐ Bytes 3‐2, 0x0000

Number of Status Elements ‐ Bytes 1‐0, 0x0000

RTF13

RTF14

SLF1

SLF2

SLF3

SLF4

SLF5

SLF6

Number of Data Elements, Bytes 1‐0

Status Block Position ‐ Bytes 3‐2, Fixed Value 0x0000

Status Block Position ‐ Bytes 1‐0, Fixed Value 0x0001

Number of Data Elements, Bytes 3‐2

Number of Status Elements ‐ Bytes 1‐0, 0x0001

Number of Status Elements ‐ Bytes 3‐2, 0x0000

FLIC Status (format TBD)

FLIC Status (format TBD)
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the FLIC Status value is explicitly defined as 0xF0F0F0F0.  This is the only case in which the FLIC 
status value will have bit 31 set, and thus may be uniquely identified. 

5.7 Implementation	of	CERN	S‐Link	(HOLA)	core	
The data written to the RTM FIFO by the S-Link Formatter machine is, as is the case for all other 

FIFOs of the processing pipeline, written as 16-bit data words.  However, this does not match with the 
specifications for the S-Link (HOLA) core firmware provided by CERN.  This firmware was written 
assuming the use of a 32-bit interface.  This 32-bit data is then written into a short FIFO within the CERN 
code.  The interested reader may note that the CERN code then takes the 32-bit data and immediately de-
multiplexes it to 16-bit data before processing further, and ask why the FLIC takes 16 bit data, 
multiplexes it into 32-bit data, only to have the CERN code immediately convert back to 16 bit width.  
The answer to this query is that the FLIC firmware was developed under an agreement in which the 
CERN code was required to be used “as-is” with no modifications. 

Inside the FLIC a small reset controller state machine is implemented that resets the CERN code in 
accordance with its requirements.  Once this is performed the S-Link code then figures out whether the 
link is “up” or “down” based upon successful reception of specific K characters in the data stream.  The 
S-Link code emulates the TLK2501 transceiver chip from Texas Instruments that was used on the ODIN 
and HOLA cards; the reader is advised to download and study this data sheet before attempting to 
understand the S-Link code. 

The GTX116 block of the FLIC pipeline firmware implements a data multiplexer that allows 
selection between transmitting S-Link data and PRBS test data, identical to that implemented for the 
front-side GTX112 transceiver block; see Figure 23.  The PRBS mode is typically only used for board 
checkout and repair.  While nominally the front-side GTX112 and back-side GTX116 transceivers run at 
the same rate, they have separately controlled reference clocks.  Thus, if the S-Link firmware is at some 
point upgraded to run at a faster speed, the FLIC may be reprogrammed to match. 

The main diagnostic signals out of the S-Link firmware are LDOWN (Link DOWN) and LFF 
(Link FIFO Full).  There is also a flow control signal XOFF.  The FLIC firmware will not attempt to send 
data if any of these conditions are present.  This can make diagnosis of problems difficult, so a register is 
implemented with a FORCE LINK UP bit to tell the FLIC that the S-Link is operational irrespective of 
the state of the link.  In the FORCE LINK UP mode the data is read from the RTM and, instead of being 
sent to the S-Link code, is simply thrown away. 

5.8 Flow	Control	in	the	processing	pipeline	
The “forward” flow of data from SSB to S-Link in the pipeline is mirrored by a “backwards” flow of 
status information.  In the top-level code of the Pipeline FPGA, there is a status collection process for 
each pipeline that monitors all FIFO buffers.  This process collects the PROG_FULL, PROG_EMPTY 
and S-Link status into three bit vectors named COLLECTED_PROG_FULLs, 
COLLECTED_PROG_EMPTYs and COLLECTED_OTHER_STOPs.  Manual register controls allow 
the user to generate a “fake” PROG_FULL and a “fake” PROG_EMPTY for testing of the flow control 
logic.  These collected status bits feed into bit 0 of the status reported back to the SSB as detailed in 
section 5.1.2. 
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Additionally, each state machine (Core Crate Receiver, Data Merge, S-Link Formatter) monitors the 
PROG_FULL of the FIFO it writes to, and if the destination FIFO is asserting PROG_FULL the machine 
will enter a wait state upon completing the record it is currently working on. 

5.9 Event	Selection	Methodology	
The pipeline processor FPGA code for each of the two data processing FPGAs implements two registers 
for record selection.    As records are received by the CoreCrateRcvr state machine, the two registers 
allow for selection of which records are to be copied to the Spy Buffer logic implemented in the two 
ATCA Interface FPGAs “U3” and “U4”.  The selection registers implement a bit-by-bit ‘AND’ 
methodology based upon the Level 1 ID value of the record.  The 23 bits of the Level 1 ID are bit-by-bit 
ANDed with a 24-bit field in the register, and if the result of the bit-by-bit AND is exactly zero, a match 
is made.  Once a match by AND pattern has been made, the logic will then copy the next ‘n’ records to 
the spy buffer based upon a count value field within the selection register.  A secondary mode is 
supported in which only records with the Level 1 ID of exactly zero are copied. 

5.9.1 Tag	FIFO	Usage	
The CoreCrateRcvr state machine in each of the four pipelines of a processing FPGA generates two bits 
for every record as described above, one for the “U3” match and one for the “U4” match.  These two bits 
are written to the Tag FIFO, a small FIFO buffer parallel to and distinct from the Event FIFO that is the 
normal output destination of the CoreCrateRcvr data.  Two additional bits, defining record status, are 
written to the Tag FIFO for a total of four bits per record.  The Tag FIFO is sufficiently deep to ensure 
that the number of records that can be held by the Tag FIFO is greater than any foreseen number of 
records in the Event FIFO between the Core Crate Receiver and Merge state machines.   

The Merge state machine reads one four-bit nibble from the Tag FIFO as a preliminary step that occurs 
after an record is available for processing in the Event FIFO but before any of the data is read from the 
CCMUX FIFO.  The Merge machine uses the four-bit value from the Event Tag FIFO to control how the 
record that is about to be read is processed. 

The two status bits in the nibble define the overall status of the record: 

 A value of "00" indicates Normal Record (no errors). 

 A value of "01" indicates Truncated Record (record may be processed but was truncated). 

 A value of "10" indicates Malformed Record (record is damaged) 

 A value of "11" indicates a Malformed Record in a way that did not require resynchronization, 
but was simply truncated at the point of error. 

 As of this writing the Data Merge machine has access to but does not use the status bits to determine 
whether the record is to be copied to the Spy Buffer logic; only the two Tag bits are used. 

5.9.2 Data	Transfer	between	FPGAs	
Events tagged for transfer between FPGAs will be transmitted using a simple copy process that 

does not reformat the data in any way, but shall add a single header word that precedes the copied data.  
The header word shall have the value 0xBExy where bits 7:4 are available to be driven by a register, and 
bits 3:0 shall contain the Event Tag information.  The data received by the fabric FPGA will be the 
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identical data that the CoreCrateRcvr sends to the Merge machine, and thus will have the format shown in 
Figure 12. 

5.9.3 Pipeline‐level	selection	control	in	ATCA	Interface	FPGAs	
Each of the eight independent pipelines in the two Pipeline FPGAs transmits the selected records to 

the ATCA Interface FPGAs using separate and independent serial links.  The ATCA Interface FPGAs 
then implement a pipeline-level selection mask to control which of these eight independent streams of 
fragments are to be assembled into the final packet sent over the ATCA backplane.  This selection 
mechanism allows removal of non-working SSB-FLIC links from the Spy Buffer process. 
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6 ATCA	Interface	Firmware	
The ATCA Interface FPGAs receive and assemble fragments that have been tagged for spy buffer 

readout by Data Pipeline FPGAs.  Each ATCA Interface FPGA, U3 and U4, four SERDES links connect 
to U1 and four links connect to U2.  This provides a dedicated link for transferring tagged record 
fragments (records) from each SSB input to each ATCA Interface FPGA.   

 

Figure 24 – ATCA Interface FPGA design overview 
 

Each input link implements a Tagged Record Receiver to perform format checking and extract 
fragment information required for the fragment assembly into the Fragment Info FIFO, while transferring 
the unmodified data into the Fragment Data FIFO.  These FIFOs are then processed by the Fragment 
Assembly Machine. 

The Fragment Assembly Machine continuously scans the input Fragment FIFOs for fragment 
data, and uses the extracted Level 1 ID field (L1 ID) from each record as defined in Section 5.3.3) and 
input channel ID  to sort them into the DDR.  The DDR memory is divided into 16 fragment assembly  
regions.  Each region is allocated 8MB of space, which is far more than required.  These buffers are filled 
sequentially.  The first fragment written a region sets the region’s L1 ID.  As additional are received their 
L1  IDs are either matched to an existing assembly region or assigned to the next available region.  There 
is no ordering of fragments within an assembly buffer.  A buffer region is released for reuse once its data 
is sent to the processing blade.  If a new L1 ID is encountered and no assembly buffers are available, the 
oldest working buffer will be forced to transfer to the blade.  Otherwise, buffers are only transferred once 
the expected SSB channels (as set by the user) have reported fragments. 

Once all fragments have been assembled within a DDR region, the data is read out and merged 
with an assembly header and footer prior to being packed into UDP packets for transmission to processor 



FLIC User’s Manual  

  

JTA, MBO  Page 49 of 69  p

blades over the ATCA Fabric Interface.  Each of the Interface FPGAs has two 10GbE links, for a total of 
four per FLIC.  Each 10GbE link has its own assembly handling pipeline for transferring data from the 
DDR to the processing blade.  

6.1 Inter‐FPGA	SERDES	Transceiver	
The design of the ATCA Interface FPGA’s GTX transceiver is the same as implemented in the 

front panel SFP interfaces of U1 & U2, except for the FIFO implementation.   

 

Figure 25 – Inter FPGA GTX design overview 
 

Each GTX runs as four independent links, and supports the same diagnostic modes as U1/U2.  
GTX113 connects to U2 and GTX114 connects to U1.  GTX112 cross connects U3 and U4, but is unused 
during normal operation.  The ATCA Interface FPGA’s never transmit data back to U1 or U2, and as such 
will never assert flow control to the Data Pipeline FPGAs. 

GTX 115 and GTX 116 are handled directly by the Xilinx 10GbE core, their design is covered in 
external documentation. 

6.1.1 FIFOs	
 The FIFOs in the ATCA Interface FPGA’s GTX transceivers provide a generic parameter in the 
firmware to independently specify the read and write depth.  The Tagged Record Receivers operate at 200 
MHz which is sufficient to continuously process fragment data at either 2 to 3Gbps.  By design, the 
Tagged Record Receivers are always reading the GTX RX FIFOs, and as such, the FIFOs are only used 
for clock domain crossing.  As a result FTX 112, GTX113 and GTX114 have all been configured with the 
minimum selectable depth of 16 words, which preserves BRAM for the Fragment Data FIFO. 

 This also means, that the ATCA Interface FPGAs will never assert flow control back to the Data 
Processing FPGAs.  Moreover, the ATCA Interface FPGAs can will only sent diagnostic test patterns, or 
under normal operation, commas characters.  
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6.2 Tagged	Record	Reception	Logic	
A tagged record or fragment is one that was selected by Data Pipeline FPGAs for assembly and 

transfer to the processing blade.  They are sent unmodified from Data Pipeline FPGAs to ATCA Interface 
FPGAs, with the exception that an over length is added onto the end for data checking purposes.  The 
Tagged Record Receiver logic is structured into four main components: 

1. The Tagged Record Receiver state machine 
2. The Fragment Info FIFO 
3. The Fragment Data Width Adapter 
4. The Fragment Data FIFO 

 

Figure 26 – Tagged Record Receiver block diagram 

6.2.1 Tagged	Record	Receiver	State	Machine	
 .  The Tagged Record Receiver state machine continuously reads the GTX RX FIFO.  Prior to 
processing tagged record fragments the state machine must synchronize its operation with the incoming 
data stream.  This is done in precisely the same way as described in Section 5.3.1.  After locking on to the 
data pattern,  record fragments are received and processed in to the Fragment Info and Data FIFOs.  The 
Tagged Record Receiver state machine extracts the L1 ID and tracks the total record fragment length, 
which are both written into the Fragment Info FIFO.  The fragment length is also verified against the 
fragment length sent from the pipeline FPGAs.  Any errors encountered during the reception of the 
fragment are also written to the Fragment Info FIFO.  

 Record fragments are initially stored in the Fragment Data FIFO.  Each channel’s Fragment Data 
FIFO is  configured with a programmable Full status flag that is configured to assert when less than 4,100 
free words remains.  This is more than the defined maximum truncated record size of 4096 words.  If the 
FIFO’s Full flag is asserted at the start of a new fragment, it will be dropped even if its length is less than 
the space available.  This occurs as the total length of the fragment cannot be predetermined by the header 
information, which prevents partial or corrupted fragments from propagating on to the Fragment 
Assembly logic.  Once a complete record has been received, this machine notifies the Fragment Assembly 
logic via a double handshake of the “Event” FIFO controller’s “Event Available” flag and the Fragment 
FIFO status flags. 

It also can be configured to operate with either full or truncated fragment headers (must be chosen 
at compile).  This is configured by the TRUNCATED_HEADER generic option.  If it is enabled, the 
machine will expect that the Data Pipeline FPGAs have striped out the first four word of the header data.  
The machine will instead expect that the fragment start with the first word of the run number; word 
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“RH05” as specified in Table 7.  If the TRUNCATED_HEADER option is not enabled, the logic 
provides a second generic option to strip the first four header words as they are received by the Tagged 
Record Receiver to produce the same effect.  This is controlled by the KEEP_FULL_HEADER option. 

 When a link is disabled from readout the Tagged Record Receiver will continue to read the GTX 
RX FIFO, however, no processing of the data occurs. 

6.2.2 Fragment	Info	FIFO	
The Fragment Description FIFO holds the fragment information required for assembly.  For each 

fragment, the Tagged Record  Receiver writes the following three items into the Fragment Info FIFO: 

1. The 32-bit L1 ID 
2. The  total fragment length as received in bytes.  (The lowest bit is always zero as the GTX data 

width is 16-bits.)  
3. A 7-bit receive error status.   

The 7-bit error status provides the following indicators (all bits are active high): 

Bit Name Meaning 
0 ANY_ERROR Set when any error is detected. 

1 NOT_IN_SYNC_ERROR 
Set while not in sync.  This should never be seen in a 
fragment passed to the assembly logic. 

2 HEADER_ERROR 

For non-truncated header mode only.  Set if a word 
other than 0xB0D0 is received while waiting for the 
next fragment.  Causes loss of sync condition.  This 
should never be seen in a fragment passed to the 
assembly logic.   

3 TRACK_ERROR 
Set if an error is detected within the track data region.  
This will result in the forced termination (truncation) 
of the record. 

4 TRAILER_ERROR 

Set when a record is truncated.  If no other error bits 
are set (other than ANY_ERROR), then the 
truncations error was the result of a malformed 
fragment trailer. 

5 TRUNCATION_ERROR 
Despite its name, it is only set if the truncation is the 
result of a fragment exceeding the maximum track 
count.  (max. track count = 0x90) 

6 LENGTH_ERROR 
Received length does not match length reported by 
the Data Pipeline FPGA.   

  Table 19 – Status values from the Tagged Record Receiver. 
   

6.2.3 Fragment	Data	Width	Adapter	
The width of the fragment data bus is changed from 16-bits to 64-bit prior to writing it to the 

Fragment Data FIFO.  This prevents throughput bottlenecks in the Fragment Assembly logic, into which 
all fragment data must be funneled.  64-bits is also the required width for interfacing to both the DDR 
Interface and 10G Ethernet Interface IP Cores via various pieces of Xilinx AXI bus IP. 

It is not assumed that the fragment length will be an integer multiple of 64 bits.  The data width 
adapter is designed to start every new fragment with 64-bit alignment.  For every four 16-bit words 
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written into the adapter, one 64-bit word is written to the Fragment Data FIFO.  However, the last word is 
always written to the Fragment Data FIFO as a fully padded 64-bit when the Tagged Record Receiver 
signals the end of a fragment.  The total fragment length information not including any alignment padding 
is preserved in the Fragment Info FIFO. 

6.2.4 Fragment	Data	FIFO	
 Each Tagged Record Receiver implements a reception buffer of 32,772kB.  The FIFO’s data 
interface is 64-bit wide.  This also serves as a domain crossing FIFO at the final stage of throughput 
expansion.  While data is written at 200 Mhz, it is read out in at 333MHz, the processing clock used for 
fragment assembly.  This frequency allows for fullest utilization of the DDR bandwidth after accounting 
for the required processing delays.  There is also a large FIFO between the Fragment Assembly Logic and 
the DDR for additional burst handling capability.  The net fragment assembly throughput approaches 
21Gbps for large fragments, but falls off to just below 16Gbps for zero track fragments. 

6.3 Fragment	Assembly	
The Fragment Assembly Logic consists of four main components:  

1. The Fragment Data Multiplexer 
2. The Fragment Assembly State Machine 
3. The Assembly Table 
4. The Assembly Table Management State Machine 

 

 

Figure 27 – Fragment Assembly Logic block diagram 
 

The fragment assembly is managed by the two state machines.  The Fragment Assembly State 
Machine is responsible for the following: 

 Controls the Fragment Data Multiplexer 

 Handles the fragment data and controls the read side of the Fragment FIFOs. 

 Delegates Assembly Table actions to the Assembly Table Management State Machine. 
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 Generates DDR write commands that, along with the fragment data are passed to the 
AXI-Stream Write Interface. 

The Assembly Table Management State Machine handles all direct interactions with the 
Assembly Table.  This includes:  

 Allocating assembly regions. 

 Searching the current set of assembly regions for an L1 ID. 

 Calculating the DDR write address when appending a fragment to an existing region. 

 Storing fragment information required to generate the Assembly Header.  

 Signaling the Assembly Read Machine to transfer an assembly once this machine 
determines that it is complete. 

 Forcing the transmission of Assemblies if one or more channels do not report a fragment 
for a given L1ID. 

 Monitor the status of ongoing DDR transfers. 

6.3.1 Fragment	Data	Multiplexer	
The Fragment Data Multiplexer is the interface between the assembly logic and the eight Tagged 

Record Receivers.  The Multiplexer design consists of three multiplexers and one a demultiplexer or 
“decoder”. 

Multiplexers: 

1. 8x64-bit Fragment Data FIFO bus. 
2. 8x55-bit Fragment Info FIFO bus. 
3. 8x10-bit Fragment FIFO status bus. 

Demultiplexers/Decoder: 

1. 3x1:8 one-hot decoders for driving Fragment FIFO control signals. 

All four components share a common selection control.  Due to the large number of signals that 
fan-in and fan-out between the Fragment Assembly Logic and the Fragment FIFOs and the speed of the 
transfers (running at 333MHz), the design has a one clock latency for both input and outputs, except for 
the Fragment Data FIFO bus mux, which has a 2 clock latency.  The selection control has a one clock 
latency for all muxes/demuxes. 

Due the pipeline delays careful consideration must be made to latencies in relation to the 
operation of the Fragment Assembly State Machine.  For example, asserting the FIFO read takes one 
clock to be received by the FIFO, and two additional clocks to return new data.  Also, when switching 
channel the FIFO status signals take one clock before they are valid.   

These latencies are preferred over running at a slow processing speed.  As the typically the most 
time is spent either transferring Fragments to the AXI-Stream Write Interface’s Input FIFO and running 
Assembly Table Operations, both of which greatly benefit from high clock speed, such that the 
throughput improvements far outweighs the few clocks of Fragment FIFO switching and control 
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latencies.  This is further mitigated by the parallel operation of the Fragment Assembly State Machine and 
Assembly Table Management State Machine.	

6.3.2 Fragment	Assembly	State	Machine	
 The purpose of the Fragment Assembly State Machine is to control the transfer of fragment data 
from the Fragment Data FIFOs (via the Fragment Data Multiplexer) into the appropriate assembly regions 
within the DDR address space.   

 

Figure 28 – Simplified Fragment Assembly State Machine Diagram 
 

The three scan and switch states define the idle loop.  The “Switch Link” state increments the 
selection control to the Fragment Data Multiplexer.  The state machine continuously and sequentially 
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scans the Fragment FIFO Fragment status for available data.  For either of the two “SCAN” states, when 
the Fragment Assembly State Machine finds an input channel with a complete fragment, it will check the 
extracted L1 ID in the Fragment Info FIFO against the “Active L1 ID,” if the Active L1 ID is valid.  

The “Active L1 ID” is defined as the last L1 ID that was processed (or is being processed).  It is 
defined to be active so long as it’s assembly has not been completed.  If the L1 ID matches, it proceed to 
the “SEND APPEND CMD” state, otherwise it depends on the SCAN state.  In the “SCAN FOR ANY 
L1 ID” state it proceeds to back the current L1 ID the “Active L1 ID”; in the other scan state the data is 
ignored and the next link is checked.  So long as the AXI-Stream Write Interface’s Input FIFO is not 
close to running empty, the Fragment Assembly State Machine will continue to hunt for the “Active L1 
ID” as an APPEND operations are far faster than a SEARCH and NEW, or SEARCH and APPEND 
operation.  Otherwise, it reverts to looking for any record fragment, as it is more important to maximize 
the DDR bandwidth than to minimize the number of Fragment Data Table operations.  Also, the 
Fragment Assembly State Machine immediately begins looking for any available fragment if the last 
assembly was marked as complete by the Assembly Table Management State Machine. 

In either scan scenario, once a fragment has been identified for assembly by the Fragment 
Assembly State Machine, it will initiate a series of interactions with Assembly Table by sending 
commands the Assembly Table Management State Machine.  After issuing commands, the Fragment 
Assembly State Machine will wait until either the Assembly Table Management State Machine reports 
“SUCCESS” or “COMPLETE”.  The machine signals SUCCESS as soon as it has been determined that 
the commands will be successfully completed and all output to the Fragment Assembly State Machine are 
valid. 

In the case of the APPEND commands, this allows the Fragment Assembly State Machine to 
nearly immediately proceed with generating the DDR write command  building the fragment header, and 
start the transfer of fragment data, while the  Assembly Table Management State Machine updates 
address pointer, total assembly length and writing the updating the other elements in the Assembly Table.     

Every SUCCESSful command will eventually also be reported as COMPLETEd.  However, 
Every COMPLETEd will not be SUCCESSful, and this routinely occurs as part of normal operation.  In 
the case of the “SEND SCAN CMD” state, the Fragment Assembly State Machine waits for 
COMPLETE.  As in this state it will be immediately sending either an APPEND or NEW command, it 
must wait for the COMPLETE status as the Assembly Table Management State Machine can only 
process one command at a time.  A SUCCESSful SCAN signals that an existing assembly region was 
found for the L1 ID and may by APPENDED, otherwise a NEW region must be allocated.  

As long as the Scan/New is successful, it proceeds to transfer the fragment to the DDR after 
writing the Fragment Header.  However if the New operation is unsuccessful, it means that all available 
assembly regions are occupied with incomplete fragment assemblies.  One must now force the completion 
of the oldest region to make space for the new L1 ID.  This occurs in the “SEND FORCE CMD” state in 
the diagram above.  It continues to cycle between FORCE and NEW until a successful NEW operation is 
reported.  To maximize bandwidth once the Fragment Assembly Machine begins a transfer it will 
continue uninterrupted until the end of the fragment.  This is achieved by verifying that sufficient space is 
available in the DDR Write FIFO prior to starting transfer, similar to the way the Fragment Receiver State 
Machine verifies available space in the Fragment Data FIFO prior to transfer.   
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The write command and write data share command FIFO.  First the write command is written 
followed by the data.  The format of the data written to the write FIFO is shown in the table below. 

  Bit Field 

Word  63..56  55..48  47..32  31..16  15..0 

Write 
Command 

Reserved 
WRITE 
ACK ID 

WRITE LENGTH  WRITE ADDRESS 

Write 
Data 

Fragment Data  
Word 3 

Fragment Data  
Word 2 

Fragment Data  
Word 1 

10111110 
USER
TAG 

E
V 

C
P 

Write 
Data 

Fragment Data 
Word 7 

Fragment Data  
Word 6 

Fragment Data  
Word 5 

Fragment Data  
Word 4 

Write 
Data 

…  …  …  … 

Figure 29 – 

6.3.3 Assembly	Table	
The Assembly Table holds all the assembly status and assembly header information.  The table is 

constructed as a RAM with 1 read-write port and 3 read-only ports.  The RAM is segmented in to 
separately writable sections blocks.  While all the read and write pointer are tied in common, for any 
given port, the write enables are unique for each elements of the table.  The table contains 16 addressable 
elements, one for each fragment assembly region.  The Fragment Data Table stores the following 
information regarding the fragment assemblies: 

1. CHANNEL_MASK – 8 bits – Included in the assembly header.  Indicates which SSB links have 
reported matching L1 IDs.  The corresponding bit of the mask is set once a fragment has been 
stored within its designated assembly region of the DDR memory. 

2. DDR_ADDR – 28 bit field – Value stores the next writable address with the corresponding 
assembly region. 

3. FRAGMENT_CH_ID – 8 x 3 bit array of values – Included in the assembly header.  This array is 
treated as a list of 8 elements that store the channel order of the fragments stores at the 
corresponding assembly region.  Fragments are stored as they arrive, channels are not ordered 
within the assembly regions. 

4. FREE – 1 bit – This bit is set when the assembly region is clear for reuse. 
5. L1_ID – 32 bit – Included in the assembly header.  This field stores the L1_ID.  Once a region 

has been designated for a particular L1_ID, it cannot be changed until the assembly has been sent 
by either completing the assembly, or by forcing it’s completion due to a missing or late 
fragment. 

6. LOCKED - 1 bit – This bit is set to lock access to the assembly region once it has been handed 
off to the Ethernet side of the design.  This prevents an assembly that has already been forced for 
readout from being later appended should the fragment show up late.  This also prevents more 
than 8 fragments from being written to a single region in the case that an L1_ID is duplicated.  
Once sent this bit remains set until a “garbage” collection cycle of the assembly table sees that the 
assembly has been sent to the blade and control has been released by the Ethernet logic. 
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7. NUM_FRAGMENTS - 4 bits – Included in the assembly header.  Value stores the number of 
fragments that have been written to the corresponding assembly region. 

In addition to the elements of the Fragment Assembly table implemented as RAM, there are three 
special elements that are implemented in the fabric logic: two S-R Flip Flops and one 3-bit counter, for 
each assembly region.  These are not implemented as RAM due to the need to have shared write control.  
These elements are: 

8. MARKED_TO_SEND – S-R Flip Flop –This FF is cleared when the Assembly Table 
Management Machine frees a region for reuse.  It is set when the DDR write logic, confirms that 
the last fragment has been written to the DDR.  Will also be set if a region is forced to readout. 

9. SENT - S-R Flip Flop – This FF is cleared when the Assemble Table Management Machine frees 
a region for reuse.  It is set when the Ethernet logic, has completed reading the data from the 
region, and is returning control to the Assembly Table Management Machine. 

10. UNACKED_WRITES – 3-bit Counter – This counter tracks the number of Fragments that have 
been allocated for the region but not yet fully transferred into DDR.  Since the DDR is slower 
than the Assembly logic, one or more fragments may be temporarily chased in the DDR write 
interface FIFO and the various buffering elements of the AXI components.  The sole purposes of 
these counters are to prevent the Assemble Table Management Machine from forcing an 
assembly for readout if one or more fragments have not been completely transferred into the 
region.  The counter is incremented by the Assemble Table Management Machine each time the 
fragment is allocated and decremented each time a write ack is received from the DDR interface. 

6.3.4 Fragment	Data	Table	Management	State	Machine	
The Fragment Data Table Management State Machine (FDTMSM) handles all interactions with 

the Fragment Data Table.  It also calculates DDR memory address offsets for placement of new fragments 
into the assembly regions.  As each fragment is copied to a given assembly region, the dual-port RAM 
location associated with that region is updated with the total length of data for the assembly region in use 
and which SERDES links have had their data copied into that assembly region, 

The interface to the FDTMSM is via 5 possible commands: Append, Clean, Force, New and 
Scan.  The diagram shows the general flow of how these commands are executed.  
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Figure 30 – 
 

For each operation the FDTMSM responds with an operation complete and operation success 
status.  If success signal is set the operation completed normally, otherwise the operation was 
unsuccessful.  The definition of success is dependent on the operation being performed.  The operations 
are: 

1. New – Attempt to allocate a new assembly region with the current L1 ID.  If the operation is 
successful it will automatically record the first fragments information into the table. 
This will fail if no assembly regions are available.  If the table is full, the New operation will 
automatically invoke a clean operation to free any assembles regions that have been 
completely processed, including transmission to the blade.   

2. Scan – Search for an incomplete assembly matching the current L1 ID.  This will only return 
the success status if an existing assembly region with less than 8 fragments is found.  A 
successful Scan does not update the table, but it does change to the current working region for 
future (append) operations. 

3. Append – Appends the current fragment to currently selected assembly.  This will always be 
successful as long as the assembly has not been marked as complete.  After appending the 
fragment to the assembly, it checks whether the assembly is complete by comparing the 
enabled channels to the channels that have been recorded in this region.    

4. Force – Forces the oldest assembly to be marked for readout.  This operation is requested by 
the Fragment Data Assembly State Machine in the event that a New operation fails.  This 
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forces incomplete fragments to read out in the event that one or more channels never report a 
fragment.    

5. Clean – Performed automatically when a New operation is executed and no free regions are 
available.  Due to pipelining, it is more efficient to free assembly regions in bursts, when 
space is required rather than one at a time when assemblies are sent.  The Clean operation is 
never commanded by the Fragment Data Assembly State Machine. 

Once an assembly has been marked complete, due to either all eight fragment slots being used or 
the all expected fragments being processed, the Data Packet Generator will automatically transfer the data 
to the Ethernet Interfaces.  Assemblies are sent as they are completed, not in order of L1 ID.  Once sent, 
the Data Packet Generator will signal the FDTMSM, which then marks the region as sent so that they 
may be freed during a Clean operation.  This may occur even, while other operations are in progress. 

6.4 Format	of	the	data	assembly	
The purpose of the Fragment Data Assembly State Machine (FDASM) is to control the transfer of 

fragment data from the Fragment Data FIFOs (via the Fragment Data Multiplexer) into the appropriate 
assembly regions within the DDR address space.   
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Figure 31 – Format of data in a completed assembly fragment 
 

The Record Header, Track Header, Track and Record Trailer data of the tagged record is exactly 
copied from the internal mesh SERDES link without modification.  Each of these tagged records is the 
data received from one pipeline for a selected Level 1 ID value.  The red “AH” and “AF” sections are 
added by the assembly logic.  The single word labeled “ET01” is the Event Tagging information that was 
added by the pipeline FPGA to indicate whether the event fragment has errors, has been marked through 
user intervention or was copied more than once. 
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FRGMENT ID 3

FRGMENT ID 4 FRGMENT ID 5 FRGMENT ID 6 FRGMENT ID 7

User Tag EV ST CP FLG

Reserved

Reserved

RSVD LEVEL 1 ID[11..0]

# of words following this word

INPUT BITMASK FRAGMENT BITMASK

FRGMENT ID 0 FRGMENT ID 1 FRGMENT ID 2

L1ID [31:16] 

L1ID [15:0]
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E 0 D F

Length of Debug Block

E 0 D A

Length of Debug Block
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HIT1 WIDTH HIT1 COORDINATE [10:0]

HIT2 WIDTH HIT2 COORDINATE [10:0]

HIT1 WIDTH HIT1 COORDINATE [10:0]

HIT2 WIDTH HIT2 COORDINATE [10:0]

HIT1 WIDTH HIT1 COORDINATE [10:0]

HIT2 WIDTH HIT2 COORDINATE [10:0]

ROW_WIDTH ROW COORDINATE [11:0]

HIT2 WIDTH HIT2 COORDINATE [10:0]

HIT1 WIDTH HIT1 COORDINATE [10:0]

COL WIDTH COL COORDINATE [11:0]

ROW_WIDTH ROW COORDINATE [11:0]

COL WIDTH COL COORDINATE [11:0]

ROW_WIDTH ROW COORDINATE [11:0]

COL WIDTH COL COORDINATE [11:0]

ROW_WIDTH ROW COORDINATE [11:0]

TRACK D0

TRACK Z0

TRACK COTTH

TRACK PHI0

TRACK CURV

COL WIDTH COL COORDINATE [11:0]

Reserved Layer Map [11:0]

Reserved ROAD ID [23:16]

ROAD ID [15:0]

TRACK CHISQ

Res [3:0] B D A

SECTOR NUMBER 

Reserved TF#  Tower Number

Reserved

Reserved Level 1 Trigger Type [7:0]

Reserved Detector Event Type [7:0]

Reserved TIM [3:0]

Run Number [30:16]

Run Number [15:0]

Extended Level 1 ID [31:16]

Extended Level 1 ID [15:0]

Reserved
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 It is required that all data in the assembly region be loaded by the “filler” machine and that the 
“reader” machine perform absolutely no modification of the data as taken from the assembly region in the 
process of copying the event to the UDP buffers. 

6.4.1 Details	of	the	assembly	header	
This section provides explanation of the various fields in the Assembly Header. 

Word Bit(s) Explanation 
AH01 15 This bit is the Complete/Forced bit.  If set, readout of this event was forced and thus at 

least one fragment is missing. 
AH01 14:12 Reserved bits. 
AH01 11:0 Lower 12 bits of the Level 1 ID identifying this event. 
AH02 15:0 16-bit count of the number of 16-bit words in this event that follow word AH02, 

inclusive of all Event Tags, Record Headers, Track Headers, Track Data and Record 
Trailers in all fragments plus the three Assembly Trailer words. 

AH03 15:8 The Input Bitmask field identifies which SERDES links were enabled for inclusion in 
this assembly region event.  Bits 15:12 are associated with pipeline indices 3, 2, 1 & 0 of 
the “U1” FPGA, respectively.  Bits 11:8 are associated with pipeline indices 3, 2, 1 & 0 
of the “U2” FPGA, respectively. 

AH03 7:0 The Fragment Bitmask field identifies which SERDES links reported data, and were 
included, in this assembly region event.  The combination of the two fields of word 
AH03 suffice to identify which fragments may be missing, but do not provide sufficient 
information to know the order in which the fragments were collected. 

AH04 and 
AH05 

All Each four-bit field in words AH04 and AH05 identifies which SERDES link and by 
association which SSB) provided each fragment in the assembly region in the order in 
which they were collected.  Fragment ID 0 specifies the SERDES link from which the 
first fragment came; fragment ID 1 specifies the SERDES link from which the second 
fragment came, etc.  The numbering convention shall be 
 

 “0000” indicates data from the SERDES associated with pipeline index 0 of the 
“U1” FPGA 

 “0001” indicates data from the SERDES associated with pipeline index 1 of the 
“U1” FPGA 

 “0010” indicates data from the SERDES associated with pipeline index 2 of the 
“U1” FPGA 

 “0011” indicates data from the SERDES associated with pipeline index 3 of the 
“U1” FPGA 

 “0100” indicates data from the SERDES associated with pipeline index 0 of the 
“U2” FPGA 

 “0101” indicates data from the SERDES associated with pipeline index 1 of the 
“U2” FPGA 

 “0110” indicates data from the SERDES associated with pipeline index 2 of the 
“U2” FPGA 

 “1111” indicates that the fragment does not exist in the data to follow. 
 
Fragments shall be collected in the simplest way possible and the fields of words AH04 
and AH05 shall indicate the temporal order in which fragments of the event were found. 

Table 20 – Assembly header field definitions 
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6.5 AXI	Based	Interconnect	
 Many firmware components and hardware interfaces are interconnected via Xilinx based AXI IP 
cores.  The green blocks in the diagram below show all Xilinx AXI IP used in the design. 

 

Figure 32 – 
 

All custom firmware components interface to AXI via the Stream variant of the AXI standard.  
The AXI Steam interface either communicates directly with the target (as is the case with the 10GbE 
core) or via AXI Stream to AXI converters in the case where the target does not support AXI stream.  All 
access to the DDR is performed over a Xilinx AXI Crossbar IP.  The cross bar implements 2 write 
channels and 2 read channels.  This crossbar interconnect manages arbitration between the read and write 
masters.  Access priority is always given to the read interfaces in avoid delaying a completed assembly 
from transmission to the blade. 

Refer to Xilinx documentation for more detail regarding Xilinx AXI and AXI Stream based IP. 

6.6 UDP	Packet	Generator	
 Once a fragment assembly has been marked for readout, the UDP packet generation logic reads 
the assembled fragments from the DDR and form it into  UDP packets.  UDP Fragmentation protocol is 
used send assemblies that are greater than 1500 bytes.  Packets are transferred to the XAUI core.  Once all 
the assembly data has been transferred, it is marked for cleanup by the FDTMSM. 
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Two copies of a UDP Packet Generator process monitor each of the two Event FIFOs that are filled by 
the Reader machine.  Each UDP Packet Generator process, upon being signal by the fragment reader that 
data is available, pulls data out in 1480 byte blocks, the default value of the packet size register.  This is 
consistent with a maximum transmission unit (MTU) size that, when padded with the standard 8-byte 
UDP header plus 20-byte IP header, will form packets 1500 bytes long.  The firmware does not support 
jumbo packets.  The packet size register may not be set to a size that would qualify as a jumbo packet.  
No checksum is calculated.  Software within the blade shall make no assumptions regarding packet size 
as the size of assembled fragments is indeterminate.  The firmware shall make no attempt to pad or 
otherwise align the total data size with some integer number of packets. 
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7 Clock	Generator	circuits	
The FLIC GTX transceivers may run at a variety of line rates as set by the external clock generators and 
PLL settings.  The PLL settings are defined in the Virtex-6 GTX User’s guide.  The PLL design is shown 
in that guide as Figure 2.9, copied here for reference: 

 

 

Figure 33 
 

The input clock is derived from the external clock generator chips.  Frequency control parameters M, N1 
and N2 are defined in the constraints file at compile time.  In the FLIC, factor M may be set to 1 or 2.  To 
date, the constraint files of the FLIC firmware always set this factor to 1.  Similarly, factor N1 may be set 
to 4 or 5.  Factor N2, according to the data sheet, may be set to a value of 2, 4 or 5 subject to the 
limitations of the VCO frequency limits.  The electrical specfications of the Virtex-6 define that the 
minimum VCO frequency is 1.2GHz and the maximum is 2.7GHz.  Similarly, the input clock is restricted 
to the range 62.5MHz – 650MHz. 

 

The reference clock supplied to the pipeline FPGAs of the FLIC for serial communication is developed by 
a CDCM61004 programmable clock generator (U48).  A high stability 25.0000MHz crystal is used as the 
base input to the CDCM61004.  Three OD (Output Divide) and two PR (Prescale/Feedback) control pins 
allow a variety of frequencies to be synthesized from the 25MHz input, from 46.875MHz to 625MHz.  
The external clock generator frequency is modified by the factors N1, N2 and M of the PLL within the 
FPGA using the equation 

 

M

NN
FclkinFpll

2*1
*  
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to derive the PLL frequency used for serial transmission.  Table 21 – Summary of all possible GTX PLL 
frequency settings in the FLIC summarizes all the possible combinations of Fpll that can be obtained. 

TXPLL_DIVSEL_FB  2 2 4 4 5  5
TXPLL_DIVSEL45_FB  4 5 4 5 4  5
Refclk in, MHZ   

46.875   
62.5  500.00 625.00 1000.00 1250.00 1250.00  1562.50
62.5  500.00 625.00 1000.00 1250.00 1250.00  1562.50
75  600.00 750.00 1200.00 1500.00 1500.00  1875.00

78.125  625.00 781.25 1250.00 1562.50 1562.50  1953.13
83.333  666.66 833.33 1333.33 1666.66 1666.66  2083.33
93.75  750.00 937.50 1500.00 1875.00 1875.00  2343.75
100  800.00 1000.00 1600.00 2000.00 2000.00  2500.00

104.167  833.34 1041.67 1666.67 2083.34 2083.34  2604.18
125  1000.00 1250.00 2000.00 2500.00 2500.00  3125.00
125  1000.00 1250.00 2000.00 2500.00 2500.00  3125.00
150  1200.00 1500.00 2400.00 3000.00 3000.00  3750.00

156.25  1250.00 1562.50 2500.00 3125.00 3125.00  3906.25
166.667  1333.34 1666.67 2666.67 3333.34 3333.34  4166.68
187.5  1500.00 1875.00 3000.00 3750.00 3750.00  4687.50
200  1600.00 2000.00 3200.00 4000.00 4000.00  5000.00

208.333  1666.66 2083.33 3333.33 4166.66 4166.66  5208.33
250  2000.00 2500.00 4000.00 5000.00 5000.00  6250.00

312.5  2500.00 3125.00 5000.00 6250.00 6250.00  7812.50
375  3000.00 3750.00 6000.00 7500.00 7500.00  9375.00
500  4000.00 5000.00 8000.00 10000.00 10000.00  12500.00
600  4800.00 6000.00 9600.00 12000.00 12000.00  15000.00
625  5000.00 6250.00 10000.00 12500.00 12500.00  15625.00

Table 21 – Summary of all possible GTX PLL frequency settings in the FLIC 
 

The cells shaded yellow are unreachable because the input reference frequency is too low.  The orange 
shaded cells indicate unusable settings that violate the allowed PLL frequency range.  The serial line rate 
that can be achieved for the different allowable PLL frequencies is controlled by a final division factor 
that can be set in the compilation constraints file to a value of 1, 2 or 4.  The result of the division factor 

setting is given by  

D

Fpll
Fline

2*
  

Thus the minimum serial line rate that can be generated by the FLIC is (1200 * 0.5), or 600Mb/sec, and 
the maximum serial rate is (2666.67 * 2), or 5.33Gb/sec.  Common values of 1.0, 2.0, 2.5, 3.0, 3.125, 4.0 
& 5.0 Gb/sec are all achievable. 
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Appendix	A:	Acronyms	and	Abbreviations	
 

FLIC FTK to Level-2 Interface Card 
ATCA Advanced Telecommunications Computing Architecture 
FTK Fast TracKer 
SSB Second Stage Board 
RAM Random Access Memory 
ROS ReadOut Subsystem 
ATLAS A Toroidal LHC Apparatus 
SFP Small Form-Factor Pluggable 
Gb Gigabit 
DDR Double Data Rate 
FPGA Field-Programmable Gate Array 
10GbE 10 Gigabit Ethernet 
DIMM Dual In-Line Memory Module 
IPMC Intelligent Platform Management Controller 
LAPP Laboratoire d’Annecy-le-Vieux de Physique des Particules 
LED Light Emitting Diode 
RTM Rear Transition Module 
JTAG Joint Test Action Group 
SRAM Static Random Access Memory 
ID Identification 
ADC Analog to Digital Converter 
I2C Inter-Integrated Circuit 
  
  
  
  
  
  
  
 


