
Table	of	Contents	
	
U3/U4	Firmware	Design	Overview	...	2	
Firmware	Components	Overview	...	3	

GTX	Transceiver	..	3	
FIFOs	...	3	
Logic	...	3	

Tagged	Event	Reception	Logic	..	3	
Tagged	Event	Receiver	Logic	..	3	
Event	Description	FIFO	...	4	
Fragment	Data	Width	Adapter	...	4	
Fragment	Data	FIFO	...	4	

Fragment	Assembly	..	4	
Fragment	Data	Multiplexer	..	4	
Fragment	Data	Table	..	5	
Fragment	Data	Table	Management	State	Machine	...	5	
Fragment	Data	Assembly	State	Machine	...	6	

AXI	Bus	interface	..	6	
UDP	Packet	Generator	...	7	
Ethernet	XAUI	and	10G	MAC	..	7	

U3/U4	Control	Registers	..	8	
U3/U4	General	Setup	Guidelines	...	14	

Phase	1:	Setup	MAC	and	IP	Address	..	14	
Step	1.1:	Configure	FLIC	MAC	Address	...	14	
Step	1.2:	Configure	FLIC	IP	Addresses	..	14	
Step	1.3:	Configure	FLIC	Port	Numbers	..	15	
Step	1.4:	Configure	Destination/Receiver	MAC,	IP,	and	Port	...	16	

Phase	2:	FPGA	to	FPGA	(intra-board)	Link	Configuration	...	17	
Step	2.1:	Reset	RX/TX	...	17	
Step	2.2:	Switch	to	Real	Data	Mode	...	17	
Step	2.3:	Reset	the	RX/TX	GTX	control	logic.	...	18	
Step	2.4:	Enable	GTX	RX/TX	Logic	...	18	
Step	2.5:	Configure	L1	Routing	Registers	...	19	

Phase	3:		Logic	Initialization	...	19	
Step	3.1:		Reset	Fragment	Assembly	Logic	...	19	
Step	3.2:		Configure	Ethernet	Interfaces,	and	Active	Assembly	Channels	...	19	

	 	

U3/U4	Firmware	Design	Overview	
	

The	U3/U4	firmware	collects	and	assembles	fragments	that	have	been	tagged	for	spy	buffer	
readout	by	U1/U2.		U1/U2	checks	each	received	fragment’s	Level	1	(L1)	ID	against	the	bit	pattern	set	by	
the	user.		There	are	separate	pattern	checks	for	determining	whether	the	packet	is	sent	to	U3	or	U4.		If	
the	bit	pattern	matches,	then	the	fragment	data	is	duplicated	with	the	copy	sent	to	U3	and/or	U4	for	
assembly.		Both	U3	and	U4	have	8	SerDes	connections	with	U1/U2,	one	allocated	for	each	SSB.	

U3/U4	implements	independent	receiver	pipelines	for	each	fragment	transfer	lane	from	U1/U2.		
The	start	of	this	pipeline	is	the	Tagged	Event	Receiver	(TER).		The	TER	performs	format	checking	and	
stores	fragment	information	required	for	fragment	assembly.		The	TER	transfers	the	unmodified	
fragments	data	to	a	holding	FIFO.		These	FIFOs	are	then	processed	by	the	Fragment	Assemble	Logic	
(FAL).	

The	FAL	continuously	monitors	the	input	FIFOs	for	fragment	data,	and	uses	the	extracted	L1	ID	
to	sort	them	into	DDR	memory.		The	DDR	is	divided	into	16	working	buffers.		During	assembly,	
fragments	with	new	L1’s	are	allocated	to	the	next	available	buffer.		Additional	fragments	with	the	same	
L1	ID	are	then	stored	sequentially	in	these	buffers.		There	is	no	ordering	of	fragments	within	an	
assembly	buffer.		If	a	new	L1	ID	is	encountered	and	no	assembly	buffers	are	available,	the	oldest	
working	buffer	will	be	forced	to	read	out.		Otherwise,	buffers	are	only	transferred	once	the	expected	
SSB	channels	(as	set	by	the	user)	have	reported	fragments.	

The	other	function	of	the	FAL	is	that	is	appends	fragment	headers	to	the	fragment	as	it	is	sorted	
into	the	buffers.		It	also	stores	information	in	a	separate	RAM	that	will	be	later	be	used	by	the	Data	
Packet	Generator	(DPG)	to	create	the	overall	fragment	assembly,	UDP,	and	IP	headers.	

	 Once	all	fragments	have	been	prepended	with	a	fragment	header	and	stored	in	the	assembly	
buffer,	the	DPG	is	responsible	for	generating	the	assembly	header	and	footer	and	transferring	the	entire	
assembly	to	the	Ethernet	interface	logic	for	transmission	to	blades	over	the	ATCA	backplanes.		Both	U3	
and	U4	have	two	10G	Ethernet	interface,	for	a	total	of	four	per	FLIC.		Each	interface	has	its	own	DPG.		
The	currently	supported	fragment	transmission	logic	supports	sending	all	data	to	either	Ethernet	
interface,	or	dividing	it	such	that	even	buffers	are	sent	to	one	and	odd	buffers	sent	to	the	other.		The	
DPG	also	handles	UDP	fragmentation	protocol.	

	 Currently	no	slow	control	occurs	on	the	backplane	interfaces.	
	

	 	

Firmware	Components	Overview	

GTX	Transceiver	

	 FIFOs	
	 The	U3/U4	FPGA	design	uses	a	slightly	modified	GTX	transceiver	when	compared	to	the	U1/U2	
implementation.		The	primary	difference	is	that	the	RX	FIFO,	uses	an	“Event”	FIFO.		However,	this	is	only	
done	to	provide,	a	FIFO	of	configurable	depth,	so	that	both	the	TX	and	RX	FIFO	sizes	are	independently	
configurable	via	a	generic	value	passed	in	at	the	top	level	of	the	design.		This	allows	the	unused	
“GTX112”	to	use	minimal	RAM	resources,	without	requiring	a	unique	component	declaration.		Also	the	
RX	FIFOs	in	GTX	113	and	114	are	only	16	words	deep	as	they	only	serve	as	a	clock	domain	crossing	
between	the	individual	link’s	receive	clocks	at	125MHz	and	the	faster	200MHz	clock	used	for	all	Tagged	
Event	Receivers.	

	 Logic	
	 Logically,	the	U3/U4	FPGA	is	identical	to	the	generic	GTX	instantiated	in	U1/U2.		Each	GTX	runs	
four	independent	links,	and	each	supports	the	same	diagnostic	modes	as	U1/U2.		GTX113	connects	to	
U2	and	GTX114	connects	to	U1.		GTX112	cross	connects	U3	and	U4,	but	is	unused.		Receive	ILAs	are	
provided	on	GTX113	and	GTX114.		However,	only	GTX114	has	a	transmit	ILA.	

Tagged	Event	Reception	Logic	
A	tagged	event	or	fragment	is	one	that	was	selected	by	U1/U2	for	readout.		They	are	sent	

unmodified	from	U1/U2	to	U3/U4,	with	the	exception	that	an	over	length	is	tagged	onto	the	end	for	
data	checking	purposes.		U3/U4	implements	a	similar	data	reception	state	machine	as	U1/U2’s	“Core	
Crate	Receiver.”		However,	there	are	many	simplifications,	as	well	as	some	added	facilities	related	to	the	
processing	of	fragments	for	assembly.	

	 The	tagged	event	receiver	logic	is	structured	into	four	main	components:	

1. The	Tagged	Event	Receiver	state	machine	
2. The	Event	Description	FIFO	
3. The	Fragment	Data	Width	Adapter	
4. The	Fragment	Data	FIFO	

Tagged	Event	Receiver	Logic	
	 The	Tagged	Event	Receiver	verifies	the	format	of	incoming	fragments	in	the	same	way	as	the	
Core	Crate	Receiver	does	for	U1/U2.		However,	it	also	pulls	out	the	L1	ID	and	the	total	fragment	length	
for	input	into	the	Event	Description	FIFO.		Another	difference	form	the	Core	Crate	Receiver,	is	that	it	will	
never	assert	flow	control	to	U1/U2.		Fragments	are	always	received	from	U1/U2,	and	the	GTX	FIFO	is	
constantly	read.		Fragments	are	initially	stored	in	the	Fragment	Data	FIFO.		If	this	FIFO	fills,	new	event	
fragment	are	simply	dropped,	on	the	effected	channel,	until	space	becomes	available.		This	FIFO	is	
capable	of	storing	several	fragments	of	the	maximal	length	as	set	by	U1/U2.		Fragments	are	dropped	if	
the	available	FIFO	space	drops	below	the	space	required	to	store	a	maximum	length	fragment.		Once	a	

complete	event	has	been	received,	this	machine	notifies	the	Fragment	Assembly	logic	via	the	“Event”	
FIFO	controller	of	the	Fragment	Data	FIFO.	

	 Event	Description	FIFO	
The	Event	Description	FIFO	holds	fragment	information	required	for	assembly.		This	includes	the	

L1	ID,	the	total	fragment	length,	and	any	error	status	reported	by	the	Tagged	Event	Receiver.	

Fragment	Data	Width	Adapter	
The	width	of	the	data	is	changed	from	16-bits	to	64-bit	prior	to	being	written	to	the	Fragment	

Data	FIFO.		This	is	done	to	prevent	throughput	bottlenecks	in	the	fragment	assembly	logic	(into	which	all	
data	must	be	funneled).		64-bits	is	also	the	required	width	for	interfacing	to	both	the	DDR	Interface	and	
10G	Ethernet	Interface	IP	Cores.			

	 Fragment	Data	FIFO	
	 Each	receive	pipeline	implements	a	reception	buffer	of	65,536kB.		This	is	also	serves	a	domain	
crossing	FIFO	in	the	final	stage	of	throughput	expansion.		While	data	is	written	in	64-bit	words	at	
200Mhz,	it	is	read	in	64-bit	words	@	333MHz.		333MHz	is	the	processing	clock	used	for	fragment	
assembly.		This	frequency	allows	for	full	utilization	of	the	DDR	bandwidth	after	accounting	for	the	
required	processing	delays.		There	is	also	a	large	FIFO	between	the	Fragment	Assembly	Logic	and	the	
DDR	for	additional	burst	handling	capability.		The	net	fragment	assembly	throughput	approaches	
21Gbps	for	large	fragments,	but	falls	off	to	just	below	16Gbps	for	zero	track	fragments.	

	There	are	only	two	reasons	these	Fragment	Data	FIFOs	will	contain	more	than	2	events.		The	
first	is	if	the	continuous	through	put	exceeds	the	DDR	bandwidth,	and	the	second	is	if	there	is	a	
continuous	steam	of	single	or	zero	track	fragments	on	7	or	more	channels,	in	which	case	the	assembly	
logic	will	not	keep	pace	with	the	incoming	data.		However,	in	this	state	it	is	still	operating	faster	than	the	
DDR	can	sustain.	

	Fragment	Assembly	
The	Fragment	Assembly	Logic	consists	of	four	main	components:		

1. The	Fragment	Data	Multiplexer	
2. The	Fragment	Data	Table	
3. The	Fragment	Assembly	State	Machine	
4. The	Fragment	Data	Table	Management	State	Machine	

The	fragment	assembly	is	managed	by	the	two	state	machines.		The	Fragment	Assembly	State	
Machine	controls	the	Fragment	Data	Multiplexer	and	the	Fragment	Data	Table	Management	State	
Machine.		It	does	not	directly	interact	with	the	Fragment	Data	Table.		Instead	it	routs	all	interactions,	as	
commands,	to	the	Fragment	Data	Table	Management	State	Machine.		

Fragment	Data	Multiplexer	
The	Fragment	Data	Multiplexer	is	responsible	for	switching	the	input	to	the	Fragment	Assembly	

Logic	between	the	8	tagged	event	channels.		This	Multiplexer	switches	the	64-bit	fragment	data	buses,	

the	event	description	FIFO	outputs,	and	all	FIFO	status	signals	of	the	8	independent	Fragment	Receivers.		
This	occurs	at	333MHz,	and	requires	a	multi	stage	pipelined	fan-in	process.		This	also	incorporates	a	
pipelined	fan-out	of	the	FIFO	control	signals.		While	simple	in	design	its	operation	is	fundamental	to	the	
operation	of	the	assembly	logic.		Due	to	pipelining	of	the	data,	status,	and	control	signal,	careful	
consideration	must	be	made	to	latencies	in	the	design	of	the	Fragment	Assembly	State	Machine.		For	
example,	when	a	transfer	of	data	occurs	from	one	of	the	Fragment	Data	FIFO	to	the	DDR	Write	FIFO,	the	
operation	is	not	interruptible.		This	is	achieved	by	verifying	that	sufficient	space	is	available	in	the	DDR	
Write	FIFO	prior	to	starting	transfer,	similar	to	the	way	the	Fragment	Receiver	State	Machine	verifies	
available	space	in	the	Fragment	Data	FIFO	prior	to	transfer.	

Fragment	Data	Table	
The	Fragment	Data	Table	is	the	heart	of	the	design.		All	fragment	information	required	for	

assembly	and	transfer	status	information	is	stored	in	this	segmented	internal	RAM.		The	table	is	
constructed	as	a	RAM	with	1	write	port	and	4	read	ports.		The	write	port	and	two	read	ports	are	used	by	
the	Fragment	Data	Table	Management	State	Machine	to	manage	the	table.		The	other	two	read	ports	
are	used	by	the	two	Data	Packet	Generators.	

	 Fragment	Data	Table	Management	State	Machine	
The	Fragment	Data	Table	Management	State	Machine	(FDTMSM)	handles	all	interactions	with	

the	Fragment	Data	Table.		It	also	calculates	DDR	memory	address	offsets	for	placement	of	new	
fragments	into	the	assembly	regions.		It	defines	several	command	or	operations	that	the	Fragment	Data	
Assembly	State	Machine	uses	to	interact	with	the	Fragment	Data	Table.		

For	each	operation	the	FDTMSM	responds	with	an	operation	complete	and	operation	success	
status.		If	success	signal	is	set	the	operation	completed	normally,	otherwise	the	operation	was	
unsuccessful.		The	definition	of	success	is	dependent	on	the	operation	being	performed.		The	operations	
are:	

1. New	–	Attempt	to	allocate	a	new	assembly	region	with	the	current	L1	ID.		If	the	operation	is	
successful	it	will	automatically	record	the	first	fragments	information	into	the	table.	
This	will	fail	if	no	assembly	regions	are	available.		If	the	table	is	full,	the	New	operation	will	
automatically	invoke	a	clean	operation	to	free	any	assembles	regions	that	have	been	
completely	processed,	including	transmission	to	the	blade.			

2. Scan	–	Search	for	an	incomplete	assembly	matching	the	current	L1	ID.		This	will	only	return	
the	success	status	if	an	existing	assembly	region	with	less	than	8	fragments	is	found.		A	
successful	Scan	does	not	update	the	table,	but	it	does	change	to	the	current	working	region	
for	future	(append)	operations.	

3. Append	–	Appends	the	current	fragment	to	currently	selected	assembly.		This	will	always	be	
successful	as	long	as	the	assembly	has	not	been	marked	as	complete.		After	appending	the	
fragment	to	the	assembly,	it	checks	whether	the	assembly	is	complete	by	comparing	the	
enabled	channels	to	the	channels	that	have	been	recorded	in	this	region.				

4. Force	–	Forces	the	oldest	assembly	to	be	marked	for	readout.		This	operation	is	requested	
by	the	Fragment	Data	Assembly	State	Machine	in	the	event	that	a	New	operation	fails.		This	

forces	incomplete	fragments	to	read	out	in	the	event	that	one	or	more	channels	never	
report	a	fragment.				

5. Clean	–	Performed	automatically	when	a	New	operation	is	executed	and	no	free	regions	are	
available.		Due	to	pipelining,	it	is	more	efficient	to	free	assembly	regions	in	bursts,	when	
space	is	required	rather	than	one	at	a	time	when	assemblies	are	sent.		The	Clean	operation	
is	never	commanded	by	the	Fragment	Data	Assembly	State	Machine.	

Once	an	assembly	has	been	marked	complete,	due	to	either	all	eight	fragment	slots	being	used	
or	the	all	expected	fragments	being	processed,	the	Data	Packet	Generator	will	automatically	transfer	the	
data	to	the	Ethernet	Interfaces.		Assemblies	are	sent	as	they	are	completed,	not	in	order	of	L1	ID.		Once	
sent,	the	Data	Packet	Generator	will	signal	the	FDTMSM,	which	then	marks	the	region	as	sent	so	that	
they	may	be	freed	during	a	Clean	operation.		This	may	occur	even,	while	other	operations	are	in	
progress.	

	 Fragment	Data	Assembly	State	Machine	
	 The	purpose	of	the	Fragment	Data	Assembly	State	Machine	(FDASM)	is	to	control	the	transfer	of	
event	fragment	data	from	the	Fragment	Data	FIFOs	(via	the	Fragment	Data	Multiplexer)	into	the	
appropriate	assembly	regions	within	the	DDR	address	space.			

The	state	machine	continuously	scans	the	Event	Description	FIFOs.		When	a	channel	receives	an	
event	fragment,	the	FDASM	proceeds	through	a	series	of	interactions	with	FDTMSM.	

First	the	FDASM	commands	a	Scan	operation.		If	it	fails,	a	New	operation	is	then	commanded	
from	the	FDTMSM.		Otherwise,	if	the	Scan	operation	was	successful,	an	Append	operation	is	requested.		
As	long	as	the	Scan/New	is	successful,	it	proceeds	to	transfer	the	fragment	to	the	DDR	after	writing	the	
Fragment	Header.		However	if	the	New	operation	is	unsuccessful,	it	will	command	a	Force	of	the	last	
unsent	assembly.		It	then	waits	for	a	successful	New	operation	before	continuing.		Fragment	data	is	
initially	transferred	into	the	Write	Burst	Master’s	data	FIFO.	

After	transferring	the	fragment,	assuming	the	assembly	is	still	incomplete,	it	proceeds	to	scan	
the	other	channels	for	the	same	L1	ID.		This	continues	until	the	either	a	match	is	found	or,	after	checking	
all	other	channels	at	least	once,		the	Write	Burst	Master’s	data	FIFO	reaches	the	almost	empty	data	
level.		If	a	match	is	found	the	new	fragment	is	simply	appended.		Otherwise,	it	reverts	to	looking	for	any	
event,	as	it	is	more	important	to	maximize	the	DDR	bandwidth	than	to	minimize	the	number	of	
Fragment	Data	Table	operations.		The	FDASM	will	immediately	being	looking	for	and	available	fragment	
if	the	last	assembly	was	marked	as	complete	by	the	FDTMSM.	

AXI	Bus	interface	
	 All	access	to	the	DDR	is	performed	over	a	Xilinx	AXI	Crossbar	IP.		The	cross	bar	implements	2	
write	channels	and	2	read		channels.		The	Write	and	Read	channels	interface	to	Xilinx	AXI	Burst	Masters	
cores	via	AXI	to	AXIS	converters.	Refer	to	Xilinx	documentation	for	more	detail.	

UDP	Packet	Generator	
	 Once	a	fragment	assembly	has	been	marked	for	readout,	the	UDP	packet	generation	logic	will	
Read	the	data	from	the	DDR	and	generate	the	UDP	packets.		UDP	Fragmentation	protocol	is	used	send	
assemblies	that	are	greater	than	1500	bytes.		Packets	are	transferred	to	the	XAUI	core.		Once	all	
assembly	data	has	been	transferred,	the	assembly	is	marked	for	cleanup	by	the	FDTMSM.	

Ethernet	XAUI	and	10G	MAC	
	 U3/U4	implements	standard	Xilinx	XAUI	cores,	for	interfacing	to	the	10G	Ethernet	interfaces.		
The	XAUI	interface	to	the	10G	MAC	core,	which	is	also	implemented	as	standard	Xilinx	Core.		Refer	to	
Xilinx	documentation	for	more	detail.	

	 	

U3/U4	Control	Registers	
	

DDR_CLOCK_CONTROL_REG	–	Address:	0x0000	
	 Bit	15:3	–	Reserved.	
	 Bit	2:0	–	Sets	the	ddr	clock	speed.		Should,	not	be	changed.	Defaults	to	200MHz.(0x0004).	
	
GENERAL_CTL_REG	–	Address	0x0002	
	 Bit	15	–		Selects	between	static	and	pulsed	reset	modes	for	frame	gen	and	frame	check	for	
GTX112,	GTX113,	and	GTX114.	
	 Bit	14:9	–	Reserved.	
	 Bit	8	–	Frame	Generator	reset	for	GTX114.	
	 	 1	=	Reset	
	 	 0	=	Run	
	 Bit	7–	Frame	Checker	reset	for	GTX114.	
	 	 1	=	Reset	
	 	 0	=	Run	
	 Bit	6	–	Frame	Generator	reset	for	GTX113.	
	 	 1	=	Reset	
	 	 0	=	Run	
	 Bit	5	–	Frame	Checker	reset	for	GTX113.	
	 	 1	=	Reset	
	 	 0	=	Run	
	 Bit	4	–	Reserved.	
	 Bit	3	–	Frame	Generator	reset	for	GTX112.	
	 	 1	=	Reset	
	 	 0	=	Run	
	 Bit	2	–	Frame	Checker	reset	for	GTX112.	
	 	 1	=	Reset	
	 	 0	=	Run	
	 Bit	1:0	–	Reserved.	
	
GTX112_CTL_REG	–	Address	0x0003	
	 Bit	15:8	–	Reserved	
	 Bit	7:4	-		Debug	use	only.		For	each	link,	if	set	to	'1',	timing	tags	may	be	issued.	
	 Bit	3:0	-		Debug	use	only.		For	each	link,	if	set	to	'0',	that	link	transmits	PRBS	data.	 .	
	
GTX113_CTL_REG	–	Address	0x0004	
	 Bit	15:8	–	Reserved	
	 Bit	7:4	-		Debug	use	only.		For	each	link,	if	set	to	'1',	timing	tags	may	be	issued.	
	 Bit	3:0	-		Debug	use	only.		For	each	link,	if	set	to	'0',	that	link	transmits	PRBS	data.	 .	
	
GTX114_CTL_REG	–	Address	0x0005	
	 Bit	15:8	–	Reserved	
	 Bit	7:4	-		Debug	use	only.		For	each	link,	if	set	to	'1',	timing	tags	may	be	issued.	
	 Bit	3:0	-		Debug	use	only.		For	each	link,	if	set	to	'0',	that	link	transmits	PRBS	data.	 	
	

	
PRBS_CONTROL_0	–	Address	0x0007	
	 Bit	15:0	–	Debug	use	only.		For	all	links	in	PRBS	mode,	sets	how	many	commas	to	send	at	reset	
before	pattern	starts.	
	
PRBS_CONTROL_1	–	Address	0x0008	
	 Bit	15:0	–	Debug	use	only.		For	all	links	in	PRBS	mode,	how	many	words	to	send	before	inserting	
a	comma.	
	
PRBS_CONTROL_2	–	Address	0x0009	
	 Bit	15:4	–	Reserved	
	 Bit	3:0	–	Debug	use	only.		For	all	links	in	PRBS	mode,	how	many	commas	to	insert		during	each	
comma	insertion	time.	
	 	
PRBS_CONTROL_3	–	Address	0x000A	
	 Bit	15:0	–	Debug	use	only.		For	all	links	in	PRBS	mode,	how	many	PRBS	words	to	send	before	
pattern	restarts.	
	 	
ILA_MUX_CTL_REG	–	Address	0x000B	
	 Bit	15:0	–	Debug	use	only.			
	
MONITOR_FIFO_CTL_REG	–	Address	0x000C	
	 Bit	15:0	–	Debug	use	only.			
	
ETH_XAUI_CTL_REG_1/2	–	Address	0x0010/0x0030	
	 Bit	15	–	Ethernet	XAUI	Reset.	
	 Bit	14:7	–	Reserved.	

Bit	6:5	–	Test	Pattern	Selection:	
"00"	=	High	frequency	test	pattern	
"01"	=	Low	frequency	test	pattern	
"10"	=	Mixed	frequency	test	pattern	
"11"	=	Reserved	

	 Bit	4	-	'1'	enables	Test	Pattern	
	 Bit	3	-	'1'	resets	RX	Link	Status	
	 Bit	2	-	'1'	resets	TX	and	RX	Local	Fault	bits	

Bit	1	-	'1'	sets	the	transceivers	into	power	down	mode.	
	 Bit	0	-	'1'	sets	the	transceivers	into	loopback	mode	
	
	 	

ETH_10GEMAC_TX_CONFIG_REG_1/2	–	Address	0x0011/0x0031	
	 Bit	15:2	–	Reserved.	

Bit	1	-	'1'	enables	the	transmitter.	
	 Bit	0	-	'1'	resets	the	transmitter.	
	
ETH_10GEMAC_RX_CONFIG_REG_1/2	–	Address	0x0013/0x0033	
	 Bit	15:2	–	Reserved.	

Bit	1	-	'1'	enables	the	receiver.	
	 Bit	0	-	'1'	resets	the	receiver.	
	
ETH_10GEMAC_PAUSE_REG_1/2	–	Address	0x0015/0x0035	
	 Bit	15:0	–	Debug	use	only.			
	
ETH_10GEMAC_CTL_REG_1/2	–	Address	0x0016/0x0036	
	 Bit	15:0	–	Debug	use	only.			
	
ETH_FLIC_MAC_ADDRESS_0_REG_1/2	–	Address	0x0017/0x0037	
	 Bit	15:8	–	FLIC	MAC	Address	Byte	2		(__-__-__-__-XX-__)	

Bit	7:0	–	FLIC	MAC	Address	Byte	1.	(__-__-__-__-__-XX)		
	
ETH_FLIC_MAC_ADDRESS_1_REG_1/2	–	Address	0x0018/0x0038	
	 Bit	15:8	–	FLIC	MAC	Address	Byte	4		(__-__-XX-__-__-__)	

Bit	7:0	–	FLIC	MAC	Address	Byte	3.	(__-__-__-XX-__-__)		
	
ETH_FLIC_MAC_ADDRESS_2_REG_1/2	–	Address	0x0019/0x0039	
	 Bit	15:8	–	FLIC	MAC	Address	Byte	6		(XX-__-__-__-__-__)	

Bit	7:0	–	FLIC	MAC	Address	Byte	5.	(__-XX-__-__-__-__)	
	
ETH_FLIC_IP_ADDRESS_0_REG_1/2	–	Address	0x001A/0x003A	
	 Bit	15:8	–	FLIC	IP	Address	Byte	2		(__.__.XX.__)	

Bit	7:0	–	FLIC	IP	Address	Byte	1.	(__.__.__.XX)	
	
ETH_FLIC_IP_ADDRESS_1_REG_1/2	–	Address	0x001B/0x003B	
	 Bit	15:8	–	FLIC	IP	Address	Byte	4		(XX.__.__.__)	

Bit	7:0	–	FLIC	IP	Address	Byte	3		(__.XX.__.__)		
	
ETH_FLIC_UDP_PORT_REG_1/2	–	Address	0x001C/0x003C	
	 Bit	15:0	–	Sets	the	FLIC’s	UDP	Port.	
	
	 	

ETH_HOST_MAC_ADDRESS_0_REG_1/2	–	Address	0x001D/0x003D	
	 Bit	15:8	–	Host	MAC	Address	Byte	2		(__-__-__-__-XX-__)	

Bit	7:0	–	Host	MAC	Address	Byte	1.	(__-__-__-__-__-XX)		
	
ETH_HOST_MAC_ADDRESS_1_REG_1/2	–	Address	0x001E/0x003E	
	 Bit	15:8	–	Host	MAC	Address	Byte	4		(__-__-XX-__-__-__)	

Bit	7:0	–	Host	MAC	Address	Byte	3.	(__-__-__-XX-__-__)		
	
ETH_HOST_MAC_ADDRESS_2_REG_1/2	–	Address	0x001F/0x003F	
	 Bit	15:8	–	Host	MAC	Address	Byte	6		(XX-__-__-__-__-__)	

Bit	7:0	–	Host	MAC	Address	Byte	5.	(__-XX-__-__-__-__)	
	
ETH_HOST_IP_ADDRESS_0_REG_1/2	–	Address	0x0020/0x0040	
	 Bit	15:8	–	Host	IP	Address	Byte	2		(__.__.XX.__)	

Bit	7:0	–	Host	IP	Address	Byte	1.	(__.__.__.XX)	
	
ETH_HOST_IP_ADDRESS_1_REG_1/2	–	Address	0x0021/0x0041	
	 Bit	15:8	–	Host	IP	Address	Byte	4		(XX.__.__.__)	

Bit	7:0	–	Host	IP	Address	Byte	3		(__.XX.__.__)		
	
ETH_HOST_UDP_PORT_REG_1/2	–	Address	0x0022/0x0042	
	 Bit	15:0	–	Sets	the	expected	hosts	UDP	port.		All	data	will	be	sent	to	this	port.	
	 	
TX_SEED_0	–	Address	0x0050	
	 Bit	15:0	–	Debug	use	only.			
	
TX_SEED_1	–	Address	0x0051	
	 Bit	15:0	–	Debug	use	only.			
	
TX_SEED_2	–	Address	0x0052	
	 Bit	15:0	–	Debug	use	only.			
	
TX_SEED_3	–	Address	0x0053	
	 Bit	15:0	–	Debug	use	only.			
	
DDR_CONTOL_REG	–	Address	0x0068	
	 Bit	15:0	–	Debug	use	only.			
	
	 	

ENABLE_PROCESSING_REG	–	Address	0x006A	
	 Bit	15:14	–	Assembly	routing	control.	
	 Bit	13	–	Data	Packet	Sender	2	enable.	(1	=	enabled)	
	 Bit	12	–	Data	Packet	Sender	1	enable.	(1	=	enabled)	
	 Bit	11:9	–	Reserved.		
	 Bit	8	–	Fragment	Data	Assembly	enable.	(1	=	enabled)	
	 Bit	7	–	GTX_115	Link	3	receiver	enable.	(1	=	enabled)	
	 Bit	6	–	GTX_115	Link	2	receiver	enable.	(1	=	enabled)	
	 Bit	5	–	GTX_115	Link	1	receiver	enable.	(1	=	enabled)	
	 Bit	4	–	GTX_115	Link	0	receiver	enable.	(1	=	enabled)	
	 Bit	3	–	GTX_114	Link	3	receiver	enable.	(1	=	enabled)	
	 Bit	2	–	GTX_114	Link	2	receiver	enable.	(1	=	enabled)	
	 Bit	1	–	GTX_114	Link	1	receiver	enable.	(1	=	enabled)		
	 Bit	0	–	GTX_114	Link	0	receiver	enable.	(1	=	enabled)	
	
GTX112_PULSED_CTL_REG_A	–	Address	0x0200	
	 Bit	15	–	GTX_112	Link	3	RX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	14	–	GTX_112	Link	3	RX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	

Bit	13	–	GTX_112	Link	3	TX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	12	–	GTX_112	Link	3	TX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	11	–	GTX_112	Link	2	RX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	10	–	GTX_112	Link	2	RX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	

Bit	9	–	GTX_112	Link	2	TX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	8	–	GTX_112	Link	2	TX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	7	–	GTX_112	Link	1	RX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	6	–	GTX_112	Link	1	RX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	

Bit	5	–	GTX_112	Link	1	TX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	4	–	GTX_112	Link	1	TX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	3	–	GTX_112	Link	0	RX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	2	–	GTX_112	Link	0	RX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	

Bit	1	–	GTX_112	Link	0	TX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	0	–	GTX_112	Link	0	TX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	
	 	

GTX113_PULSED_CTL_REG_A	–	Address	0x0202	
	 Bit	15	–	GTX_113	Link	3	RX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	14	–	GTX_113	Link	3	RX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	

Bit	13	–	GTX_113	Link	3	TX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	12	–	GTX_113	Link	3	TX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	11	–	GTX_113	Link	2	RX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	10	–	GTX_113	Link	2	RX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	

Bit	9	–	GTX_113	Link	2	TX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	8	–	GTX_113	Link	2	TX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	7	–	GTX_113	Link	1	RX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	6	–	GTX_113	Link	1	RX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	

Bit	5	–	GTX_113	Link	1	TX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	4	–	GTX_113	Link	1	TX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	3	–	GTX_113	Link	0	RX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	2	–	GTX_113	Link	0	RX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	

Bit	1	–	GTX_113	Link	0	TX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	0	–	GTX_113	Link	0	TX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	
GTX114_PULSED_CTL_REG_A	–	Address	0x0204	
	 Bit	15	–	GTX_114	Link	3	RX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	14	–	GTX_114	Link	3	RX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	

Bit	13	–	GTX_114	Link	3	TX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	12	–	GTX_114	Link	3	TX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	11	–	GTX_114	Link	2	RX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	10	–	GTX_114	Link	2	RX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	

Bit	9	–	GTX_114	Link	2	TX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	8	–	GTX_114	Link	2	TX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	7	–	GTX_114	Link	1	RX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	6	–	GTX_114	Link	1	RX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	

Bit	5	–	GTX_114	Link	1	TX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	4	–	GTX_114	Link	1	TX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	3	–	GTX_114	Link	0	RX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	2	–	GTX_114	Link	0	RX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	

Bit	1	–	GTX_114	Link	0	TX	Logic	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	0	–	GTX_114	Link	0	TX	PLL	Reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	
PULSED_RESETS_REG	–	Address	0x020F	
	 Bit	15:14	–	Reserved	

Bit	13	–	GTX_114,	GTX_113,	and	GTX112	TX	Logic	reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
	 Bit	12:10	–	Reserved	

Bit	9	–	GTX_114,	GTX_113,	and	GTX112	TX	FIFO	reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	
Bit	8:1	–	Reserved	
Bit	0	–	Fragment	Assembly	master	logic	reset.	Set	to	‘1’	to	reset,	self	clears	after	write.	

	 	

U3/U4	General	Setup	Guidelines	

Phase	1:	Setup	MAC	and	IP	Address	
The	user	should	setup	the	MAC	and	IP	address	after	a	power	cycle,	and	prior	to	other	configuration.	

Step	1.1:	Configure	FLIC	MAC	Address	
Configure	the	FLICs	Eth1	and	Eth2	MAC	address	for	both	U3	and	U4.		The	following	example	configures	
the	MAC	address	as	follows:	
	
U3	Eth1:	00-11-22-33-44-55	
U3	Eth2:	AA-BB-CC-DD-EE-FF	
U4	Eth1:	01-23-45-67-78-9A	
U4	Eth2:	45-67-89-AB-CD-EF	
	
Line	 Command	 Value	 Target	FPGA	 Target	Register	 Target	Address	
1	 Write	 0x4455	 U3	 ETH_FLIC_MAC_ADDRESS_0_REG_1	 0x0017	
2	 Write	 0x2233	 U3	 ETH_FLIC_MAC_ADDRESS_1_REG_1	 0x0018	
3	 Write	 0x0011	 U3	 ETH_FLIC_MAC_ADDRESS_2_REG_1	 0x0019	
4	 Write	 0xEEFF	 U3	 ETH_FLIC_MAC_ADDRESS_0_REG_2	 0x0037	
5	 Write	 0xCCDD	 U3	 ETH_FLIC_MAC_ADDRESS_1_REG_2	 0x0038	
6	 Write	 0xAABB	 U3	 ETH_FLIC_MAC_ADDRESS_2_REG_2	 0x0039	
7	 Write	 0x789A	 U4	 ETH_FLIC_MAC_ADDRESS_0_REG_1	 0x0017	
8	 Write	 0x4567	 U4	 ETH_FLIC_MAC_ADDRESS_1_REG_1	 0x0018	
9	 Write	 0x0123	 U4	 ETH_FLIC_MAC_ADDRESS_2_REG_1	 0x0019	
10	 Write	 0xCDEF	 U4	 ETH_FLIC_MAC_ADDRESS_0_REG_2	 0x0037	
11	 Write	 0x89AB	 U4	 ETH_FLIC_MAC_ADDRESS_1_REG_2	 0x0038	
12	 Write	 0x4567	 U4	 ETH_FLIC_MAC_ADDRESS_2_REG_2	 0x0039	
	

Step	1.2:	Configure	FLIC	IP	Addresses	
Configure	the	FLICs	Eth1	and	Eth2	IP	address	for	both	U3	and	U4.		The	following	example	configures	the	
MAC	address	as	follows:	
	
U3	Eth1:	10.10.10.10	
U3	Eth2:	10.10.10.11	
U4	Eth1:	10.10.10.12	
U4	Eth2:	10.10.10.13	
	
Line	 Command	 Value	 Target	FPGA	 Target	Register	 Target	Address	
13	 Write	 0x0A0A	 U3	 ETH_FLIC_IP_ADDRESS_0_REG_1	 0x001A	
14	 Write	 0x0A0A	 U3	 ETH_FLIC_IP_ADDRESS_1_REG_1	 0x001B	
15	 Write	 0x0A0B	 U3	 ETH_FLIC_IP_ADDRESS_0_REG_2	 0x003A	
16	 Write	 0x0A0A	 U3	 ETH_FLIC_IP_ADDRESS_1_REG_2	 0x003B	
17	 Write	 0x0A0C	 U4	 ETH_FLIC_IP_ADDRESS_0_REG_1	 0x001A	
18	 Write	 0x0A0A	 U4	 ETH_FLIC_IP_ADDRESS_1_REG_1	 0x001B	
19	 Write	 0x0A0D	 U4	 ETH_FLIC_IP_ADDRESS_0_REG_2	 0x003A	
20	 Write	 0x0A0A	 U4	 ETH_FLIC_IP_ADDRESS_1_REG_2	 0x003B	

	
Step	1.3:	Configure	FLIC	Port	Numbers	
Configure	the	FLICs	Eth1	and	Eth2	UDP	port	from	which	fragment	assemblies	will	be	sent.		
U3	Eth1:	50000	
U3	Eth2:	50001	
U4	Eth1:	50002	
U4	Eth2:	50003	
	
Line	 Command	 Value	 Target	FPGA	 Target	Register	 Target	Address	
21	 Write	 0xC350	 U3	 ETH_FLIC_UDP_PORT_REG_1	 0x001C	
22	 Write	 0XC351	 U3	 ETH_FLIC_UDP_PORT_REG_2	 0x003C	
23	 Write	 0XC352	 U4	 ETH_FLIC_UDP_PORT_REG_1	 0x001C	
24	 Write	 0xC353	 U4	 ETH_FLIC_UDP_PORT_REG_2	 0x003C	
	
	 	

Step	1.4:	Configure	Destination/Receiver	MAC,	IP,	and	Port	
Set	the	destination	MAC	address,	IP	address,	and	port	number	for	Eth1	and	Eth2	for	both	U3	and	U4.		
This	set	where	fragment	assemblies	will	be	sent.		This	example	configures	the	following	destination	
MAC/IP	and	ports:	
	
U3	Eth1:	MAC:	11-11-11-11-11-11,	IP:	10.10.10.20,	Port:	51000	
U3	Eth2:	MAC:	22-22-22-22-22-22,	IP:	10.10.10.21,	Port:	51001	
U4	Eth1:	MAC:	33-33-33-33-33-33,	IP:	10.10.10.22,	Port:	51002	
U4	Eth2:	MAC:	44-44-44-44-44-44,	IP:	10.10.10.23,	Port:	51003	
	
Line	 Command	 Value	 Target	FPGA	 Target	Register	 Target	Address	
25	 Write	 0x1111	 U3	 ETH_HOST_MAC_ADDRESS_0_REG_1	 0x001D	
26	 Write	 0x1111	 U3	 ETH_HOST_MAC_ADDRESS_1_REG_1	 0x001E	
27	 Write	 0x1111	 U3	 ETH_HOST_MAC_ADDRESS_2_REG_1	 0x001F	
28	 Write	 0x2222	 U3	 ETH_HOST_MAC_ADDRESS_0_REG_2	 0x003D	
29	 Write	 0x2222	 U3	 ETH_HOST_MAC_ADDRESS_1_REG_2	 0x003E	
30	 Write	 0x2222	 U3	 ETH_HOST_MAC_ADDRESS_2_REG_2	 0x003F	
31	 Write	 0x3333	 U4	 ETH_HOST_MAC_ADDRESS_0_REG_1	 0x001D	
32	 Write	 0x3333	 U4	 ETH_HOST_MAC_ADDRESS_1_REG_1	 0x001E	
33	 Write	 0x3333	 U4	 ETH_HOST_MAC_ADDRESS_2_REG_1	 0x001F	
34	 Write	 0x4444	 U4	 ETH_HOST_MAC_ADDRESS_0_REG_2	 0x003D	
35	 Write	 0x4444	 U4	 ETH_HOST_MAC_ADDRESS_1_REG_2	 0x003E	
36	 Write	 0x4444	 U4	 ETH_HOST_MAC_ADDRESS_2_REG_2	 0x003F	
37	 Write	 0x0A14	 U3	 ETH_HOST_IP_ADDRESS_0_REG_1	 0x0020	
38	 Write	 0x0A0A	 U3	 ETH_HOST_IP_ADDRESS_1_REG_1	 0x0021	
39	 Write	 0x0A15	 U3	 ETH_HOST_IP_ADDRESS_0_REG_2	 0x0040	
40	 Write	 0x0A0A	 U3	 ETH_HOST_IP_ADDRESS_1_REG_2	 0x0041	
41	 Write	 0x0A16	 U4	 ETH_HOST_IP_ADDRESS_0_REG_1	 0x0020	
42	 Write	 0x0A0A	 U4	 ETH_HOST_IP_ADDRESS_1_REG_1	 0x0021	
43	 Write	 0x0A17	 U4	 ETH_HOST_IP_ADDRESS_0_REG_2	 0x0040	
44	 Write	 0x0A0A	 U4	 ETH_HOST_IP_ADDRESS_1_REG_2	 0x0041	
45	 Write	 0XC738	 U3	 ETH_HOST_UDP_PORT_REG_1	 0x0022	
46	 Write	 0XC739	 U3	 ETH_HOST_UDP_PORT_REG_2	 0x0042	
47	 Write	 0XC740	 U4	 ETH_HOST_UDP_PORT_REG_1	 0x0022	
48	 Write	 0XC741	 U4	 ETH_HOST_UDP_PORT_REG_2	 0x0042	
	

	 	

Phase	2:	FPGA	to	FPGA	(intra-board)	Link	Configuration	
The	FPGA-to-FPGA	links	should	be	configured	prior	to	configuration	of	the	SSB	and	RTM	links.		Even	
though	all	internal	links	are	not	used,	there	is	no	drawback	to	configuring	and	locking	all	inter-FPGA	
links.		The	Following	table	provides	a	mapping	of	the	inter-FPGA	links.	

From	/	To	 U1	 U2	 U3	 U4	
U1	 ---	 GTX113	 GTX114	 GTX115	
U2	 GTX114	 ---	 GTX113	 GTX115	
U3	 GTX114	 GTX113	 ---	 GTX112	
U4	 GTX114	 GTX113	 GTX112	 ---	
	

The	following	example	configures	all	inter-FPGA	links:	

Step	2.1:	Reset	RX/TX	
First	put	all	inter-FPGA	frame	checker,	generator,	and	FIFO	logic	into	reset.		The	following	four	
commands	put	U1/U2’s	GTX113,	GTX114	and	GTX115;	and	U3/U4’s	GTX112,	GTX113	and	GTX114,	frame	
checking	logic	into	reset.	

Line	 Command	 Value	 Target	FPGA	 Target	Register	 Target	Address	
49	 Set	 0x078C	 U1	 GENERAL_CTL_REG	 0x0002	
50	 Set	 0x078C	 U2	 GENERAL_CTL_REG	 0x0002	
51	 Set	 0x01EC	 U3	 GENERAL_CTL_REG	 0x0002	
52	 Set	 0x01EC	 U4	 GENERAL_CTL_REG	 0x0002	
	

Step	2.2:	Switch	to	Real	Data	Mode	
Next,	switch	all	inter-FPGA	links	to	real	data	mode.		This	is	achieved	by	the	following	four	commands.		
Note	that	different	register	addresses	are	used	for	U1/U2	and	U3/U4.		

Line	 Command	 Value	 Target	FPGA	 Target	Register	 Target	Address	
53	 Write	 0x000F	 U1	 GTX113_CTL_REG	 0x0012	
54	 Write	 0x000F	 U1	 GTX114_CTL_REG	 0x0013	
55	 Write	 0x000F	 U1	 GTX115_CTL_REG	 0x0014	
56	 Write	 0x000F	 U2	 GTX113_CTL_REG	 0x0012	
57	 Write	 0x000F	 U2	 GTX114_CTL_REG	 0x0013	
58	 Write	 0x000F	 U2	 GTX115_CTL_REG	 0x0014	
59	 Write	 0x000F	 U3	 GTX112_CTL_REG	 0x0004	
60	 Write	 0x000F	 U3	 GTX113_CTL_REG	 0x0005	
61	 Write	 0x000F	 U3	 GTX114_CTL_REG	 0x0006	
62	 Write	 0x000F	 U4	 GTX112_CTL_REG	 0x0004	
63	 Write	 0x000F	 U4	 GTX113_CTL_REG	 0x0005	
64	 Write	 0x000F	 U4	 GTX114_CTL_REG	 0x0006	
	

Step	2.3:	Reset	the	RX/TX	GTX	control	logic.		
	

Line	 Command	 Value	 Target	FPGA	 Target	Register	 Target	Address	
65	 Write	 0xFFFF	 U1	 GTX113_PULSED_CTL_REG_A	 0x0202	
66	 Write	 0xFFFF	 U1	 GTX114_PULSED_CTL_REG_A	 0x0204	
67	 Write	 0xFFFF	 U1	 GTX115_PULSED_CTL_REG_A	 0x0206	
68	 Write	 0xFFFF	 U2	 GTX113_PULSED_CTL_REG_A	 0x0202	
69	 Write	 0xFFFF	 U2	 GTX114_PULSED_CTL_REG_A	 0x0204	
70	 Write	 0xFFFF	 U2	 GTX115_PULSED_CTL_REG_A	 0x0206	
71	 Write	 0x5555	 U3	 GTX112_PULSED_CTL_REG_A	 0x0200	
72	 Write	 0xAAAA	 U3	 GTX112_PULSED_CTL_REG_A	 0x0200	
73	 Write	 0x5555	 U3	 GTX112_PULSED_CTL_REG_A	 0x0200	
74	 Write	 0x5555	 U3	 GTX113_PULSED_CTL_REG_A	 0x0202	
75	 Write	 0xAAAA	 U3	 GTX113_PULSED_CTL_REG_A	 0x0202	
76	 Write	 0x5555	 U3	 GTX113_PULSED_CTL_REG_A	 0x0202	
77	 Write	 0x5555	 U3	 GTX114_PULSED_CTL_REG_A	 0x0204	
78	 Write	 0xAAAA	 U3	 GTX114_PULSED_CTL_REG_A	 0x0204	
79	 Write	 0x5555	 U3	 GTX114_PULSED_CTL_REG_A	 0x0204	
80	 Write	 0x5555	 U4	 GTX112_PULSED_CTL_REG_A	 0x0200	
81	 Write	 0xAAAA	 U4	 GTX112_PULSED_CTL_REG_A	 0x0200	
82	 Write	 0x5555	 U4	 GTX112_PULSED_CTL_REG_A	 0x0200	
83	 Write	 0x5555	 U4	 GTX113_PULSED_CTL_REG_A	 0x0202	
84	 Write	 0xAAAA	 U4	 GTX113_PULSED_CTL_REG_A	 0x0202	
85	 Write	 0x5555	 U4	 GTX113_PULSED_CTL_REG_A	 0x0202	
86	 Write	 0x5555	 U4	 GTX114_PULSED_CTL_REG_A	 0x0204	
87	 Write	 0xAAAA	 U4	 GTX114_PULSED_CTL_REG_A	 0x0204	
88	 Write	 0x5555	 U4	 GTX114_PULSED_CTL_REG_A	 0x0204	
	

Step	2.4:	Enable	GTX	RX/TX	Logic	
Now	take	the	inter-FPGA	frame	checker,	generator,	and	FIFO	logic	out	of	reset.	

Line	 Command	 Value	 Target	FPGA	 Target	Register	 Target	Address	
89	 Clear	 0x078C	 U1	 GENERAL_CTL_REG	 0x0002	
90	 Clear	 0x078C	 U2	 GENERAL_CTL_REG	 0x0002	
91	 Clear	 0x01EC	 U3	 GENERAL_CTL_REG	 0x0002	
92	 Clear	 0x01EC	 U4	 GENERAL_CTL_REG	 0x0002	
	

	 	

Step	2.5:	Configure	L1	Routing	Registers	
Set	the	desired	L1	ID	mask	values	for	the	U1	and	U2	Core	Crate	Links.		This	control	the	routing	of	events	
to	either	U3	or	U4	by	the	L1	ID.	

Line	 Command	 Value	 Target	FPGA	 Target	Register	 Target	Address	
93	 Write	 User	val	 U1	 U3_L1_ID_MATCH_REG_1	 0x002A	
94	 Write	 User	val	 U1	 U3_L1_ID_MATCH_REG_2	 0x002B	
95	 Write	 User	val	 U1	 U4_L1_ID_MATCH_REG_1	 0x002C	
96	 Write	 User	val	 U1	 U4_L1_ID_MATCH_REG_2	 0x002D	
97	 Write	 User	val	 U2	 U3_L1_ID_MATCH_REG_1	 0x002A	
98	 Write	 User	val	 U2	 U3_L1_ID_MATCH_REG_2	 0x002B	
99	 Write	 User	val	 U2	 U4_L1_ID_MATCH_REG_1	 0x002C	
100	 Write	 User	val	 U2	 U4_L1_ID_MATCH_REG_2	 0x002D	
	

Continue	to	configure	the	external	links,	prior	to	proceeding	to	Phase	3.	

Phase	3:		Logic	Initialization	
The	phase	performs	final	initialization	of	the	fragment	assembly	logic	prior	to	the	start	of	a	run.	

Step	3.1:		Reset	Fragment	Assembly	Logic	
Reset	all	fragment	assembly	logic.	

Line	 Command	 Value	 Target	FPGA	 Target	Register	 Target	Address	
101	 Set	 0x0001	 U3	 PULSED_RESETS_REG	 0x020F	
102	 Set	 0x0001	 U4	 PULSED_RESETS_REG	 0x020F	
	

Step	3.2:		Configure	Ethernet	Interfaces,	and	Active	Assembly	Channels	
Set	which	SSB	channels	will	participate	in	fragment	assembly	and	which	Ethernet	interfaces	will	be	
active.		

Example	values:	

All	assembly’s	to	Eth1:	0x11XX	

All	assembly’s	to	Eth2:	0xE1XX	

Send	half	to	Eth1	and	half	to	Eth2:	0xB1XX		

The	lower	8	bits	(“XX”)	set	which	SSB	are	monitored	for	purposes	of	fragment	assembly.	

Line	 Command	 Value	 Target	FPGA	 Target	Register	 Target	Address	
103	 Write	 0xB1FF	 U3	 ENABLE_PROCESSING_REG	 0x006A	
104	 Write	 0xB1FF	 U4	 ENABLE_PROCESSING_REG	 0x006A	
	

		

