This is an old revision of the document!


<< back to HepSim manual

Public results

Articles

Since 2013, there was a number of articles based on the HepSim simulations. Here are some of them I'm aware of:

  • A. V. Kotwal, S. Chekanov, M. Low, Double Higgs Production in the 4τ channel from resonances in longitudinal vector boson scattering at a 100 TeV collider, arXiv:1504.08042. Phys. Rev. D 91, 114018 (2015)
  • B.Auerbach, S.Chekanov, J.Love, J.Proudfoot and A.V.Kotwal. “Sensitivity to new high-mass states decaying to ttbar at a 100 TeV collider”, arXiv:1412.5951. 2014. Phys. Rev. D 91 (2015) 034014
  • J.Sagoff (edtor). News article. “Researchers create enormous simulation of proton collisions”. Argonne Science Highlights. December 12, 2014. Argonne Science Highlights article
  • R.Calkins et al. Reconstructing top quarks at the upgraded LHC and at future accelerators. (Summary of the Snowmass Top algorithms and detectors. High Energy Frontier Study Group). E-print: arXiv:1307.6908. Snowmass proceedings 2013. SNOW13-00076
  • B.Auerbach, S.V.Chekanov, N.Kidonakis. Studies of highly-boosted top quarks near the TeV scale using jet masses at the LHC. E-print: arxiv.org:1301.5810 ANL-HEP-13-05. Snowmass proceedings 2013
  • K.Agashe et al., Snowmass 2013 Top quark working group report. Top Working Group. e-Print: arXiv:1311.2028
  • J.Adelman, M.Baumgart, A.Garcia-Bellido, A.Loginov. Determining Top Quark Couplings at the LHC: Snowmass White Paper arXiv:1308.5274. SNOW13-00154
  • S.V. Chekanov, I. Pogrebnyak, D. Wilbern, Cross-platform validation and analysis environment for particle physics, arXiv:1510.06638. Computer Physics Communications 220C (2017) pp. 91-96.
  • S.V.Chekanov, J.Dull. Energy range of hadronic calorimeter towers and cells for high-pT jets at a 100 TeV collider, arXiv:1510.06638
  • S.V. Chekanov and M. Demarteau, Conceptual Design Studies for a CEPC Detector. arXiv:1604.01994 (April 7, 2016). A white paper contributed to the IAS Program on High Energy Physics (4-29 Jan, 2016), International Journal of Modern Physics A (IJMPA) Volume No.31, Issue No. 33, 1644021-1
  • Complex detector simulations of proton collisions for FCC-hh. FCC News. May 31, 2016. https://fcc.web.cern.ch/Pages/news/Complex-detector-simulations-of-proton-collisions-for-FCC-.aspx
  • ATLAS Collaboration. Measurement of the inclusive isolated prompt photon cross section in pp collisions at s√=8 TeV with the ATLAS detector. May 2016. arXiv.org hep-ex arXiv:1605.03495
  • T.Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena. CERN-TH-2016-111. hep-ph > arXiv:1606.00947
  • ATLAS Collaboration, Measurement of exclusive production and search for exclusive Higgs boson production in pp collisions at s√=8 TeV using the ATLAS detector. arXiv:1607.03745
  • Public repository with Monte Carlo simulations for high-energy particle collision experiments. ICHEP2016 Proceedings (Chicago, 2016). S.Chekanov. hep-ex > arXiv:1609.04455
  • R.Santos et. al. Machine learning techniques in searches for tt¯h in the h→bb¯ decay channel. arXiv:1610.03088. Published as JINST 12 (2017) P04014.
  • Shin-Shan Yu, etc. Study Of Boosted W-Jets And Higgs-Jets With the SiFCC Detector. Proceedings for the 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, USA (6 pages, 8 figures), arXiv:1611.01136
  • Sourav Sen et al. Detectors for Superboosted tau-leptons at Future Circular Colliders. PoS (ICHEP2016) 788
  • M. Beydler et al., Initial performance studies of a general-purpose detector for multi-TeV physics at a 100 TeV pp collider. Dec 2016. arXiv:1612.07291. Published in JINST 12 (2017) P06009.(PDF)
  • Effect of PYTHIA8 tunes on event shapes and top-quark reconstruction in e+e− annihilation at CLIC, S.Chekanov, M.Demarteau, A.Fischer, J.Zhang, CLIC Collaboration, CLICdp-Note-2017-005, Oct 20, 2017. ANL-HEP-2017-138349, http://cds.cern.ch/record/2289960 and https://arxiv.org/abs/1710.07713
  • FCC-hh: The Hadron Collider, Future Circular Collider Conceptual Design Report Volume 3, Eur. Phys. J. Special Topics 228, 755–1107 (2019)
  • Precision searches in dijets at the HL-LHC and HE-LHC, S. V. Chekanov, J. T. Childers, D. Frizzell, J. Proudfoot, R. Wang, ANL-HEP-139751, JINST 13 (2018) P05022 https://arxiv.org/abs/1710.09484.
  • S.V. Chekanov, Imaging particle collision data for event classification using machine learning, May (2018), ANL-HEP-144006, NIMA 931 (2019) 92 (https://doi.org/10.1016/j.nima.2019.04.031). Also as https://arxiv.org/abs/1805.11650
  • ATLAS Collaboration, Search for dijet resonances in events with an isolated lepton using s√=13~TeV proton–proton collision data collected by the ATLAS detector. ATLAS-CONF-2018-015, http://cds.cern.ch/record/2621126
  • CEPC CDR (a section on silicon tracker using SiD-like concept) 2018
  • C.-H Yeh et al. Jet Substructure Variables with the SiFCC Detector at 100 TeV. Contribution to the 39th International Conference on High Energy Physics (ICHEP2018). https://arxiv.org/abs/1811.12805 (arXiv:1811.12805)
  • D. Blyth et al. ProIO: An Event-Based I/O Stream Format for Protobuf Messages. Comp. Phys. Comm. 241 (2019) 98 (https://arxiv.org/abs/1812.03967)
  • Beyond the Standard Model Physics at the HL-LHC and HE-LHC. Report from Working Group 3 on the Physics of the HL-LHC, and Perspectives at the HE-LHC. CERN Yellow Report. CERN-LPCC-2018-05. https://arxiv.org/abs/1812.07831. Section 6.4.2 “Precision searches in dijets at the HL- and HE-LHC”. p.216-220.
  • C.-H. Yeh et al. Studies of granularity of a hadronic calorimeter for tens-of-TeV jets at a 100 TeV pp collider, JINST 14 (2019) P05008, arXiv:1901.11146 (https://arxiv.org/abs/1901.11146).
  • Paul Glaysher, Judith M. Katzy, Sitong An. Iterative subtraction method for Feature Ranking. (2019) (https://arxiv.org/abs/1906.05718)
  • ATLAS Collaboration. “Search for dijet resonances in events with an isolated charged lepton using s√=13 TeV proton-proton collision data collected by the ATLAS detector”, JHEP 06 (2020) 151 (https://arxiv.org/abs/2002.11325)
  • D. Benjamin, S.V. Chekanov, W. Hopkins, Y. Li, J.R. Love. Automated detector simulation and reconstruction parametrization using machine learning. (https://arxiv.org/abs/2002.11325), 2020 J. Inst. 15 P05025
  • S.V. Chekanov, A.V. Kotwal, C.-H. Yeh, S.-S. Yu. Physics potential of timing layers in future collider detectors. 2020 JINST 15 P09021, contribution to Snowmass 2021. (https://arxiv.org/abs/2005.05221).
  • J. Clavijo, P.Glaysher, J.Katzy, Adversarial domain adaptation to reduce sample bias of a high energy physics, DESY 20-073, arXiv:2005.00568
  • M.T. Lucchini et. al., “New perspectives on segmented crystal calorimeters for future colliders”, (https://arxiv.org/abs/2008.00338), JINST 15 (2020) P11005
  • S. V. Chekanov, G. Gavalian, N. A. Graf, Jas4pp - a Data-Analysis Framework for Physics and Detector Studies, Comp. Physics. Comm. 262 (2021) 107857, (https://arxiv.org/abs/2011.05329) (2020) ANL-HEP-164101, SLAC-PUB-17569
  • S.Chekanov, Machine Learning Using Rapidity-Mass Matrices for Event Classification Problems in HEP. Universe, 2021, 7(1):19. https://www.mdpi.com/2218-1997/7/1/19
  • J.Pata, et.al. MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks. e-Print: 2101.08578
  • S.V. Chekanov, S. Darmora, W. Islam, C.E.M. Wagner, J. Zhang, Model-independent searches for new physics in multi-body invariant masses, ANL-HEP-166648, Snowmass21 contribution, https://arxiv.org/abs/2103.10217. Universe 2021, 7(9), 333; https://www.mdpi.com/2218-1997/7/9/333
  • Frank E. Taylor, Applications of pT-xR Variables in Describing Inclusive Cross Sections at the LHC. https://arxiv.org/pdf/2105.01010.pdf
  • S.V.Chekanov, Searches for new physics in collision events using a statistical technique for anomaly detection, Proceedings of 50th International Symposium on Multiparticle Dynamics (ISMD2021), 12-16 July 2021, SciPost Phys. Proc. 10, 015 (2022), https://arxiv.org/abs/2110.06277
  • S. Darmora et. al, Signal optimization studies for dijet resonances in events with identified leptons using machine learning, June 2021, ATL-COM-PHYS-2021-391, https://cds.cern.ch/record/2773239/
  • S.V. Chekanov, W. Hopkins, Event-based anomaly detection for new physics searches at the LHC using machine learning, https://arxiv.org/abs/2111.12119 (2021), ANL-HEP-17239 (also contributed paper)
  • S.Chekanov et al, “Precision timing for collider-experiment-based calorimetry”, Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021), March 14, 2022, https://arxiv.org/abs/2203.07286, ANL-HEP-173859, MPP-2022-28
  • B. Nachman et al, Jets and Jet Substructure at Future Colliders, https://arxiv.org/abs/2203.07462 March 2022, Snowmass21 white paper.
  • F. Mokhtar et al., Explaining machine-learned particle-flow reconstruction, https://arxiv.org/abs/2111.12840 (2022)
  • ATLAS Collaboration, ATLAS Collaboration, Search for new phenomena in multi-body invariant masses in events with at least one isolated lepton and two jets using s√=13 TeV proton-proton collision data collected by the ATLAS detector, July 1, 2022, ATLAS-CONF-2022-048 ATLAS-CONF-2022-048

There are also several ATLAS papers and a number of supporting notes that used Monte Carlo files from the HEPSIM repository.

HepSim in public talks

  • S.Chekanov. Challenges for Higgs physics for a 100 TeV collider. Link to PDF. CPAD conference. Arlington, Taxes, USA, October 5, 2015
  • A.V. Kotwal. Study of double Higgs production at a VLHC. Link to the talk.
  • S.Chekanov. Sensitivity to New High-mass States Decaying to ttbar in Fully Boosted Regime at a 100 TeV Collider Link to a talk in PDF. IAS program on Future of HEP. Jan 2008, 2015. Joint Consortium of Fundamental Physics, Hong Kong, China. link to the talk.
  • S.Chekanov. Studies of HCAL calorimeter segmentation for FCC (Link to a talk). FCC-hh calorimeters informal meeting, Dec. 2015
  • C.Doglioni. High mass resonances: reach and detector requirements. Higgs & BSM at 100 TeV workshop.11-13 March 2015, CERN Link to the talk
  • S.Chekanov, J.Proudfoot, Effect of had. calorimeter transversal granularity on boosted top mass resolution. Link to a talk
  • C.Helsens, Performance requirements of the electromagnetic and hadronic calorimeters. Workshop on requirements for future detector technologies in view of FCC-hh. Link to a talk.
  • J.Love. A study of high mass Z' → tt decays: lessons learned. Link to the talk. Higgs & BSM at 100 TeV meeting (March, 11-15, 2015)
  • C.Solans, Longitudinal containment parametrization for TeV single hadrons and jets at a 100 TeV collider. FCC-hh calorimeters informal meeting, Link to the talk
  • S.Chekanov. High-mass states decaying to ttbar in fully boosted regime at a 100 TeV collider. Next steps in the Energy Frontier - Hadron Colliders, Workshop at LPC@FNAL. Link to the meeting
  • S.Chekanov. Performance requirements for Hadron Calorimeters. First Annual Meeting of the Future Circular Collider (FCC) study. 23-29 March 2015, Washington D.C. Link to the talk.
  • Simulations for the Energy Frontier. JLab detector group meeting (plusANL/HEP and ANL/Physics divisions). Jan 13, 2016. jlab_simulations_hep.pdf
  • Shin-Shan Eiko Yu. Search For New Physics In Boosted Di-Bosons. IAS Conference, 2016 (Jan). Link to presentation
  • S.Chekanov. IAS seminar ias_simulations_hep.pdf. Jan 4-29 (2016). Hong-Kong. China
  • S.Chekanov. HEP division seminar. March 2, 2016. Simulations for the energy frontier. https://indico.hep.anl.gov/indico/conferenceDisplay.py?confId=801
  • S.Chekanov. HepSim Monte Carlo repository. Future Trends in Nuclear Physics Computing March 16-18, 2016 Thomas Jefferson National Accelerator Facility Newport News, VA. https://www.jlab.org/conferences/trends2016/talks/chekanov.pdf
  • ProMC: a self-describing file format. A talk given at the JLab software meeting (March 29, 2016) . a link to PDF file
  • Nhan Viet Tran. Boosted Z' studies. FCC-detector meeting (CERN, Apr.6,2016). Link to the talk.
  • Multiple presentations at the detector sections during FCC-week 2016 (Rome). Fcc-week Rome 2016 timetable. See also the talk Simulation of a high-granular hadronic calorimeter for multi-TeV physics.
  • Future HEP experiments and simulations for the energy frontier. A seminar at the Iowa State University. May 4, 2016. PDF file of the talk.
  • Ana Henriques, Performance requirements of the hadronic calorimetry for a 100 TeV proton-proton collider and the potential of an ATLAS-Tile concept readout by si-PMTS, CALOR 2016, 15-20 May 2016 EXCO in Daegu, Republic of Korea. Link to PDF files.
  • Nhan Viet Tran et al. Detectors for Superboosted Jet Substructure at Future Circular Colliders. Boost2016 Conference. Zurich. link to PDF file
  • J.Zuzelski (U.Michigan). Optimization of tracking performance for multi-TeV tracks. Future collider studies meettings PDF talk
  • Shin-Shan Yu et al. ICHEP16 (Chicago/USA, Aug. 2016). Study Of Boosted W-Jets And Higgs-Jets With the SiFCC detector. URL link to the talk
  • S.Chekanov. Simulations for future collider experiments. ICHEP16 (Chicago/USA, Aug. 2016). URL link
  • J.Zuzelski. Tracking performance studies using high-pT tracks for a 100 TeV collider. CERN FCC hadron detector meeting. Aug.3, 2016 PDF link
  • S.Sen, Nhan Viet Tran et al. Two posters for ICHEP216 on HGCAL and tau identifications for 100 TeV.
  • Shin-Shan Yu et al. Study Of Single Particle And Jet Response With the SiFCC Detector. FCC hadron detector meeting. CERN. Sep. 29, 2016.PDF talk
  • S.Chekanov et al. High-granularity hadronic calorimeter for multi-TeV physics at a 100 TeV pp collider. PDF talk. CPAD Instrumentation Frontier Meeting 2016 : NEW TECHNOLOGIES FOR DISCOVERY II. (Oct 8-10, 2016). Caltech, California (USA).
  • S.Chekanov. Seminar given at ICHEP (Beijing, China). October 24, 2016. PDF file of the talk
  • M.Selvaggi, 1st FCC Physics Workshop 16/01/2017 — CERN. fccphysics_week_v4.pdf
  • J.Repond. Argonne's EIC activity. EIC meeting, March 19, 2017. EIC_ANL_Mar_2017.pptx
  • CLISdp software meeting, 2017 (May 9) Link to the PDF talk
  • S.Chekanov at al. “High-granularity hadronic calorimeter for tens-of-TeV jets at a 100 TeV pp collider”, FCC week, 29 May - 2 June 2017, Berlin, Germany. Link to PDF file
  • S.Chekanov, M.Demarteau, A.Fisher, “Effect of Pythia8 tunes on event shapes and ttbar reconstruction for CLICdb studies”, CLICdb WG meeting, July 13, 2017, CERN, PDF file
  • S.Chekanov et al. Simulations of detector response for multi-TeV physics at a 100 TeV pp collider. Boost2017. Buffalo, NY, USA. July 16-July 21, 2017 PDF file
  • W.Armstrong et al.,Full simulation and reconstruction of multiple EIC concept-detectors, 2017. Italy. PDF file
  • A.Kotwal. Physics and Experiments at a 100 TeV pp Collider, US-ATLAS workshop, July 2017. PDF talk
  • D.Blyth. HepSim mini-tutorial (JLab EIC meeting, July 30, 2017). PDF talk
  • CEPC-Si design design concept discussion, Sep 2017. IHEP (China) agenda
  • S.Chekanov et al. Reconstruction of ttbar at CLIC 380 GeV CM energy. CLICdb analysis meeting.CERN (Sep 14, 2017) agenda
  • J.Repond, EINN conference, Cyprus, October 29-November 4, 2017, PDF talk
  • Weiming Yao (LBNL). Full silicon detector CEPC detector concept. International Workshop on High Energy Circular Electron Positron Collider, IHEP, Chinal Nov 16-18, 2017. PDF file
  • M.Diefenthaler, EIC Software Consortium, Nov 2017, PDF file
  • Chih-Hsiang Yeh et al. Study of Jet Substructure Variables with the SiFCC Detector at 100 TeV. Poster at ICHEP2018 (4-11 July 2018, Coex, Seoul) PDF file
  • HepSim repository for the DarkMachines project. Kick-off for DarkMachines: Unsupervised (and related) Collider Searches. July 31, (2018) PDF file
  • Studies of granularity of a hadronic calorimeter for tens-of-TeV jets at a 100 TeV pp collider. By Chih-Hsiang Yeh. Boost2019. (June 2019). PDF talk
  • HepSim – Monte Carlo repository for physics and detector studies for future particle experiments. CEPC workshop, Chicago Sep.16-19 (2019). By S.Chekanov, PDF talk
  • S.Chekanov, A.V.Kotwal, J.List, M.Vos, Requirements from substructure and jet reconstruction, Snowmass21, Snowmass Community Planning Meeting, October 5-8 (2020), Session 131, PDF talk
  • Chih-Hsiang Yeh et al. Timing layers. 4th FCC Physics and Experiments Workshop, Nov 11, 2020, CERN PDF talk
  • S.Chekanov, S.Magill, Towards simulations of HHCAL for future detectors, CalVision workshop, Univ of Maryland, 29-30 July 2021, PDF file
  • S.Chekanov, Machine learning and anomaly detection using rapidity-mass matrices PDF file ISMD2021. 50th International Symposium on Multiparticle Production. (July 12-July 16, as a poster)
  • Wasikul I. Model-Independent Searches for New Physics in Multi-Body Invariant Masses, APS April Meeting 2021, https://meetings.aps.org/Meeting/APR21/Session/G19.1
  • S.Chekanov et al., Jas4pp. A Data-Analysis Framework for Physics and Detector Studies. APS April Meeting 2021, https://meetings.aps.org/Meeting/APR21/Session/T19.1
  • S.Chekanov et. al, Calorimeter performance studies using Monte Carlo simulations for future collider detectors. CPAD Instrumentation Frontier Workshop 2021, 18-22 March 2021, Stony Brook, NY (https://indico.fnal.gov/event/46746/contributions/210055/)
  • J.Crosby, “Searches for new physics in collision events using a statistical technique for anomaly detection”, APS April Meeting, Apr 8-14, 2022, https://meetings.aps.org/Meeting/APR22/Session/Q09.4
  • S.Chekanov, Event-based anomaly detection for new physics searches at the LHC using machine learning, APS April Meeting, Apr 8-14, 2022, https://meetings.aps.org/Meeting/APR22/Session/Q09.1