Future high-energy experiments and Monte Carlo simulations for the Energy Frontier

S. Chekanov
HEP/ANL
HEP seminar, Iowa State University
May 4, 2016
Particle Physics at the LHC

- Study of the basic elements of matter by smashing subatomic particles at very high energy
 - Explain the Higgs mechanism proposed in 1960s
 - Find new particles and measure their properties
 - High-precision measurements of the Standard Model

\[H(125 \text{ GeV}) \rightarrow 2 \gamma \]
Future of particle collisions

High-Luminosity Large Hadron Collider (HL-LHC)
High-Energy LHC
Large Hadron electron Collider at CERN (LHeC)
ILC (International Linear Collider)
FCC (Future Circular Collider): FCC-ee, FCC-ep, and FCC-hh
CEPC (Circular Electron Positron Collider)
SPPC (Super Proton-Proton Collider)
EIC (Electron Ion Collider)
Future of particle collisions

High-Luminosity Large Hadron Collider (HL-LHC)

High-Energy LHC

Large Hadron electron Collider at CERN (LHeC)

ILC (International Linear Collider)

FCC (Future Circular Collider): FCC-ee, FCC-ep, and FCC-hh

CEPC (Circular Electron Positron Collider)

SPPC (Super Proton-Proton Collider)

EIC (Electron Ion Collider)
increase luminosity (rate of collisions) by a factor of 10 beyond the original design value of the LHC (from 300 to 3000 fb⁻¹)

Physics goals:

- Measure existing Higgs decays with better precision
- Rare Higgs decays (μ⁺μ⁻, Z-γ, phi), double Higgs production
- Deviations from the SM & high-precision high-pT physics
Future of HEP and simulations for the Energy Frontier. S.Chekanov (ANL)

High-energy LHC (HE-LHC)

WG set up to explore technical feasibility of pushing LHC energy to:
→ design value: 14 TeV
→ 15 TeV (dipole field of ~9.5 T) beyond (e.g. by replacing dipoles with 11 T Nb₃Sn magnets)
→ Identify open risks, needed tests and technical developments, trade-off between energy and machine efficiency/availability
Report on 1) end 2016, 2) end 2017, 3) end 2018 (in time for ES)

HE-LHC (part of FCC study): ~16 T magnets in LHC tunnel (√s~28 TeV)
- strong physics case if new physics from LHC/HL-LHC
- powerful demonstration of the FCC-hh magnet technology
- uses existing tunnel and infrastructure; can be built at constant budget

Milestone: update of European Strategy for Particle Physics (~ 2019-2020)
International Linear Collider (ILC) and Compact Linear Collider (CLIC)

Advantages over proton-proton collisions:
- simple initial state (e+e-), variable energies, momentum conservation, democratic production of particles
- High-precision measurements at e+e-
- Most mature post-LHC era experiment
- ILC: CM energy 500 GeV-1000 GeV
- CLIC: CM energy up to 3000 GeV
- Interest expressed in Japan in hosting the ILC (~50% contribution)
- CLIC is considered by CERN (but less advanced)

Avoid synchrotron radiation ~ E^4 / m^3
International Linear Collider (ILC) and Compact Linear Collider (CLIC)

A HEPAP subpanel, P5 (Particle Physics Project Prioritization Panel), was responsible for developing a strategic plan, executable over 10 years, in the context of a 20-year global vision, in realistic budget scenarios

- USA participation through a decision point within the next 5 years:

 P5-11: Motivated by the strong scientific importance of the ILC and the recent initiative in Japan to host it, the U.S. should engage in modest and appropriate levels of ILC accelerator and detector design in areas where the U.S. can contribute critical expertise. Consider higher levels of collaboration if ILC proceeds.

ILC in Scenario C (the ‘unconstrained” budget scenario):

Should the ILC go forward, Scenario C would enable the U.S. to play world-leading roles in the detector program as well as provide critical expertise and accelerator components.
Precision electroweak measurements

FCC-ee (formerly known as TLEP)

- e+e- circular collider envisioned in a new 80-100 km tunnel in the Geneva area
- centre-of-mass energy from 90 to 400 GeV
- Key features:
 - $\Delta M(t) < 10$ MeV
 - $\Delta M(W) < 0.3$ MeV
 - $\Delta M_{\alpha_{\text{QED}}} < 10^{-5}$
 - $\Delta M_{\alpha_s(Z)} < 0.0001$
- Conceptual Design Report (CDR) by 2018

Circular Electron Positron Collider (CEPC)

- e+e- circular “Higgs factory” planned in China
- 240-350 CM energy + higher luminosity (250 fb$^{-1}$/year)
- Pre-CDR is ready
Discovery machines & energy frontier

FCC-hh (CERN) ~ 2040

- Proton-Proton collisions at 100 TeV in the Geneva area
- part of the Future Circular Collider design study (FCC) at CERN
- Physics reach: ~30 TeV for production of new heavy particles
- Peak luminosity $\leq 30 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$, 25(5) ns, pileup 1020(204)
- Many challenges for the detector!
- Conceptual Design Report (CDR) by 2018

Super Proton-Proton Collider (SppC)

- Proton-proton collisions at 70 TeV in the same tunnel as CEPC
- Physics reach: ~25 TeV for masses of new particles
- Construction: \textbf{2035-2042}. Data taking: \textbf{2042-2055}
Energy frontier + intensity frontier: LHeC, FCC-ep (CERN), Electron-ion collider (EIC)

- **LHeC**: 7 GeV proton collided with 20-60 GeV electron ($s^{1/2} = 1.3$ TeV)
- **HE-LHC**: 15 TeV proton collided with 60 GeV electrons ($s^{1/2} = 1.9$ TeV)
- **FCC-ep**: 50 GeV proton collided with > 20 GeV electron ($s^{1/2} = 3.5$ TeV)
- **EIC** – electron-ion collider JLab/BNL: low energy electrons with ions ($s^{1/2} < 0.14$ TeV)
 - tomography with resolution ~1/10 fb, “sweet” spot for reach QCD dynamics

Deep inelastic scattering at the energy frontier

Turn LHC to precision Higgs factory

$WW \rightarrow H$ (~ 200 fb$^{-1}$ for LHeC)

→ Studies of gluon density at large x
Energy frontier + energy frontier: LHeC, FCC-ep (CERN), Electron-ion collider (EIC)
Timeline

In the next decade we will deal with explorations of physics reach, detector parameters and new technology options for post-LHC era.

Requires detailed simulation of physics processes and detector responses.
Why do we need simulations? Higgs example

- Completely new kinematic regime → very challenging for detector designs
- 100 TeV collider will hunt for M~30 TeV particles decay to Higgs bosons
- The detector must be optimized to reconstruct Higgs at $p_T \sim 0.5-10$ TeV

100 TeV pp. Standard model

- Standard model:
 - ~100,000 Higgs / ab$^{-1}$ for $p_T > 1$ TeV at LO

FCC

- Large Lorentz boost of decay products

HL-LHC

- Just kinematics:
 - $p_T(H) > 2$ TeV ~ 5 deg separation
 - $p_T(H) > 10$ TeV ~ 1 deg separation

Instrumental challenges:
- identify 2 photons separated by 1 degree
- reject $\pi^0 \rightarrow \gamma \gamma$ background at the same time!
- similar problems for electron, b-jets decays
Simulations for particle experiments

- Physics
- Physics Event Generator
- Full Simulation
- Analysis
- Physics Performance
- Detector Design
- Detector R&D

Software

Image from W. Armstrong (Physics/ANL)
Simulations for the Energy Frontier

Process modeling
- Known particle properties
- Standard Model (SM) is well established (QCD & QED)
- Event generators at LO, NLO, NNLO, NLO matched to NLO, etc.
- Models beyond the SM with detailed implementation in event generators

Detector response
- Interactions of particles with materials
- Many parametrized cross sections (when exact theory is unknown)
- Simulation packages (Geant4, etc.)

Computing
- Fast progress in computer technology
- Open Science HPC and Grid (OSG)
Monte Carlo simulation for DPF (Snowmass 2013)

- First Snowmass meeting with large-scale open-access MC production
 - ~billion events with Delphes fast simulation
 - 140 pileup scenarios for HL-LHC
- Open-science grid (OSG)

Learned Lessons:

- Need to simplify access to data → use HTTP?
- Insufficient file storage & large EVGEN event files when using pileup
 - EVGEN files & LOG files removed, ROOT files slimmed
 → Insufficient information for archiving
- No sustainable data servers for long-term preservation
 → Most files cannot be accessed any longer

Each experiment has its own resources & proprietary tools. How to share resources using project-specific infrastructure?
Moving forward: Public Repository with Simulations

Learning from Snowmass, building a public Monte Carlo repository

MC models

- Non-proprietary software
- Open data access
- Simple deployment on personal computers (Windows / Linux / Mac)

EVGEN (event-generator level)

- Fast detector simulation
- Full (Geant4-based) simulation with easy-to-use detector description

web-optimized archives with theoretical data

files with events

Simulation & event reconstruction

http://

Open access

Long-term availability & preservation
New data format for EVGEN: ProMC

- "Archive" self-described format to keep MC events:
 - Event records, NLO, original logfiles, PDG tables etc.
- 30% smaller files than existing formats after compression

Number of used bytes depends on values. Small values use small number of bytes

Google's Protocol buffers

- Effective file size reduction for pile-up events
 - Particles with small momenta → less bytes used
- Installed on Mira (BlueGene/Q)
- Separate events can be streamed over the Internet:
 - similar to avi frames for web video players

http://atlaswww.hep.anl.gov/asc/promc/
HepSim project http://atlaswww.hep.anl.gov/hepsim/

- 2013-14: A community project to keep EVGEN files
- 2015-now: Stores fast and full simulations using “tags”
- Used for future circular collider studies (ANL/Fermilab/CERN):
 - LHC physics
 - Phase-II LHC upgrade
 - HL-LHC (pp 14 TeV 3000 fb-1)
 - FCC-hh studies (100 TeV pp, 3 ab-1)
 - HGCAL for CMS
 - Circular Electron Positron Collider studies
 - EIC
- Theorists can add their simulations:
 - .. and analyze events the way experimentalists do!
- Can be used for outreach too
HepSim stores EVGEN files (LO,NLO, etc), fast simulations, full Geant4 simulations

NERSC, CERN mirrors

CEPC, SPPC, FCC-hh
Dataset entry: e+e- collisions (CM energy = 250 GeV). Z → e+e-

Information about "gev250ee_pythia6_zpole_ee" dataset

Name: gev250ee_pythia6_zpole_ee
Collisions: e+e-
CM Energy: 0.25 TeV
Entry ID: 146
Topic: SM
Generator: PYTHIA6
Calculation level: LO+PS+hadronisation
Process: Z boson to e+e-
Total events: 2000000
Number of files: 100
Cross section (σ): 1.7765 ± 0.0126 pb
Luminosity (L): 1.125E+06 pb⁻¹ (or) 1125.7948 fb⁻¹ (or) 1.125 ab⁻¹
Format: ProMC
Submission date: Tue Oct 13 14:28:55 CDT 2015
Download URL: http://mc.hep.anl.gov/asc/hepsim/events/ee/250gev/pythia6_zpole_ee

Mirrors:
MC truth size: 0.825 GB
Fast simulation:
Full simulation:
Record slimmed: No
Events weighted: No
User description:
PYTHIA version 6.4. Z production (Zpole) with decays to e+e-. Other details in the

ProMC version: 4; Nr events: 1000; Varint E: 1000000; Varint L: 10000; Log
file.txt; Last modified: 2015-10-15 20:31:08; Settings: PYTHIA-6.4.28; MSEL 0 0 0 0 ! all mixed events; NTOT 0 0 0 0 ! Number of events; ECM 0 0 250.0 ! CM energy (GeV)
0 0 839264 ! random seed; MSEL 0 0 0 0 ! all mixed events; PMAS m 1 172.5 ! PMAS
19.1876 ! Z boson mass; PMAS 24 1 38.0380 ! W boson mass; PMAS 25 1 125 ! H
mass; MSUS 1 0 ! ffbar to Z; MSTP 43 0 2 ! Z only, no gamma; MDME 174 0 !
MDME 175 1 0 ! U U->; MDME 176 1 0 ! S S->; MDME 177 1 0 ! C C->; MDME 178 1
B->; MDME 179 1 0 ! T T->; MDME 182 1 1 ! E E->; MDME 183 1 0 ! NU_E NU_E->;
1 0 ! MU+ MU-; MDME 185 1 0 ! MU_+ NU_MU-; MDME 186 1 0 ! TAU- TAU+
1 0 ! NU_TAU- NU_TAU+; PAR 7 1 0 0 ! ctau=10mm; HST 2 2 0 2 !

File metadata:

Validation:

Output plot (SVG)
Available Monte Carlo generators

- MG5/PY6 (NLO+PS+hadr): TTbar, Higgs+jj, Higgs+TTbar etc
- MG5/Herwig (NLO+PS+hadr)
- PYHIA8 (many processes)
- FPMC (exclusive WW, Higgs)
- HERWIG++ pp collisions (QCD dijets)
- SuperChic 2 - A Monte Carlo for Central Exclusive Production
- MCFM (NLO): Higgs -> γγ , Inclusive gamma, TTbar
- NLOjet++ (NLO) for inclusive jets (bins in pT)
- JETPHOX (NLO) for inclusive photons (bins in pT)
- PYTHIA6 for e+e and mu+mu- collisions
- LEPTO/PYTHIA for ep DIS
- LEPTO/ARIADNE for ep DIS
- Single particle guns (+ pileup)

~20% samples generated on BlueGene/Q (Mira) supercomputer (Jetphox, MCFM)
~40% HEP-ANL (mainly Madgraph)
~40% OSG-CI grid (ANL/UChicago) and USATLAS CI (for phase II)
Long-term preservation of theoretical calculations

- Storing Monte Carlo predictions in files makes sense if:

\[
\frac{\text{time to download & analyze on commodity computer}}{\text{CPU*hours needed to create the prediction}} \equiv \epsilon \ll 1
\]

\[
\begin{align*}
\epsilon &\sim 0.01-1 \quad \text{for LO MC} \\
\epsilon &\ll 0.01 \quad \text{for NLO etc.}
\end{align*}
\]

- \(\epsilon \ll 1 \):
 - Madgraph5 etc. (NLO+PS+hadronisation), ALPGEN
 - Some fast-converging NLO calculations (MCFM, jetPHOX etc)
 - MC with \(\epsilon \sim 1 \) but after mixing with pile-up (CPU intensive)

- \(\epsilon \sim 1 \): Less appropriate approach for:
 - LO simulations (Pythia)
 - Some NLO programs with slow convergence
 - requires too large data volumes to keep weighted events
Examples of differential cross sections for 100 TeV

Data creation (~10GB) takes ~10000 CPU*h

Analysis step takes <30 min

Future of HEP and simulations for the Energy Frontier. S.Chekanov (ANL)
HepSim statistics
(excluding fast and Geant4 simulations)

~ 200 Monte Carlo samples
(some are “compound”, i.e. consists of subsamples)

~1.5 billion events
HepSim repository. How it works

Event Generators

- PYTHIA6
- PYTHIA8
- HERWIG++
- Madgraph5
- MCFM
- JetPhox
- FPMC
- NLOjet++
- LEPTO/Ariadne

HepSim

- index files
- create metadata
- prepare for batch download
- validate with Jython scripts
- create search database

large-scale computing resources

Delphes fast simulation (ROOT)

SLIC (Geant4) full simulation and reconstruction software (LCIO)
MC simulations for the HEP community

Usage:

- Snowmass papers for HL-LHC
- ATLAS run I & II analyses: excl. H⁰, excl. WW, direct photons with MCFM NLO, JETPHOX NLO, Long-lived particles, ADD model for gravitons, H → φγ → validated and shipped to ATLAS
- FCC physics studies, CPEC (recently)
Software for full simulations

Simulator for the Linear Collider (SLIC) software
- Optimized for the SiD detector at SLAC (T.Johnson, N.Graf, J.McCormick, J.Strube)
- Re-purposed for future pp collider studies (S.C., A.Kotwal, J.Strube)
- Integrated with **HepSim**. Deployed on Open-Science Grid (OSG)

Analysis: C++/Root or **Jas4pp** (ANL,S.C,E.May). Based on Jas3 (SLAC)

http://atlaswww.hep.anl.gov/hepsim/
SiD detector for ILC

- Multi-purpose detector for the ILC
- The key characteristics of the SiD detector:
 - 5 Tesla solenoid
 - Silicon tracker: 50 um readout pitch
 - ECAL: (0.35 cm cell size, W / silicon)
 - HCAL:
 - 1x1 cm cell size (RPC)
 - 40 layers for barrel (HCAL) ~4.5 λ_i
- Optimized for particle-flow algorithms (PFA)
- Fully configurable using SLIC software
Re-purposing SiD for circular collides

- Re-purpose SiD design and SLIC software for circular colliders:
 - CEPC, EIC, FCC-hh

- Leverage large investments to R&D of the SiD detector, including SLIC software used in the past by the ILC community (SiD+ILD)

- Keep in mind that SiD:
 - is over-designed for CEPC (250 GeV) and expensive ($320M M&S)
 - is too expensive for EIC + requires optimizations
 - requires significant increase in size for FCC-hh (> x2) + more optimizations
Designing a detector for CEPC (e+e- 250 GeV)

SiD detector is designed for ~500 GeV particles/jets (0.5-1 TeV CM energy)
But CEPC will measure particles/jets up to 125 GeV (250 CM energy)

Possible optimizations:

- **HCAL:**
 - barrel: 4.5 λ_i (40 layers) → 4.0 λ_i (35 layers)
 - endcap: 5 λ_i (45 layers) → 4.0 λ_i (35 layers)

- **Tracking:**
 - 5 Tesla → 4 Tesla

![Diagram showing possible optimizations](image)

Design a light, cost-optimized version of the SiD detector for CEPC
and use several physics processes to benchmark its performance

HepSim samples after full SLIC simulations

- Event samples for SiDCC1 (rfull002) and the standard SiD (rfull001):
- Generate Pythia6 processes and process with SLIC:
 - $Z \rightarrow e^+e^-$
 - $Z \rightarrow \text{tau tau}$
 - $Z \rightarrow \mu^+\mu^-$
 - $Z \rightarrow b\bar{b}$
 - $H(125) \rightarrow b\bar{b}$
 - $H(125) \rightarrow \gamma\gamma$
 - $H(125) \rightarrow ZZ^* \rightarrow 4l$
 - $H(125) \rightarrow \text{tau tau}$

URL with manual/examples:
Event display (e^+e^- 250 GeV CM energy)

H(125) → 4 e

H(125) → γγ
Comparing SiD with SiDCC1

- Benchmark processes for e+e- (250 GeV)
 - $Z \rightarrow e^+e^-$, $Z \rightarrow b\bar{b}$, $Z \rightarrow \tau^+\tau^-$, $H \rightarrow \gamma\gamma$
 - $H \rightarrow 4l$, $H \rightarrow b\bar{b}$, QCD jets
- Use particle flow objects to reconstruct invariant masses and jet energy resolutions using the Durham jet algorithm

Simplification of the SiD detector does not compromise physics performance
ep collisions in the SiD detector

- Re-purpose SiD design for the Electron-Ion Collider (EIC) ?
- Optimize the SiD detector for electron-ion collisions

DIS sample ($Q^2 > 5 \text{ GeV}^2$)
CM energy 141 GeV (“EIC-like”)

HepSim Monte Carlo samples:

Reconstructed electron energy from PFA: $E=16.92 \text{ GeV}$
“EVGEN” energy: 16.90 GeV

scattered electron in ECAL:
Converting SiD detector to SiFCC for a 100 TeV pp collider

With contributions from:
A.Kotwal (Fermilab/Duke), L.Gray (Fermilab), J.Strube (PNNL), N.Tran (Fermilab), S. Yu (NCU), S.Sen (Duke), J.Repond (ANL), J.McCormick (SLAC), J.Proudfoot (ANL), A.M.Henriques Correia (CERN), C.Solans (CERN), C.Helsens (CERN)
Requirements for FCC-hh hadronic calorimeter

- **Good containment up to 20 TeV jets**
 - affects jet energy resolution & leakage biases
- **Good longitudinal segmentation**
 - affects jet energy resolution
- **Good transverse segmentation**
 - resolving boosted particles (M~10-40 TeV range)

Optimize performance and sensitivity to new physics using appropriate technologies

Require detailed Geant4 simulations
Lateral segmentation. Where does it matter..

Brock Tweedie. Next steps in the Energy Frontier. LPC@FNAL. Aug. 24, 2014

\[X \rightarrow W / Z / \text{Higgs} / \text{top} \]

\[X \rightarrow \text{quarks/gluons} \]

Large mass → large Lorentz boost → large collimation of decay products

TeV-scale pair-produced

\[\chi \rightarrow \tilde{\chi} / \tilde{t} / \tilde{\tau} / \tilde{\nu} \]

SM + dark matter

\[\chi \rightarrow \tilde{\chi} / \tilde{t} / \tilde{\tau} / \tilde{\nu} \]
Boosted top from high-mass particles

- $M(X) \sim 10\text{ TeV} \rightarrow \text{top quarks with } p_T(\text{top}) > 3-5\text{ TeV}$
- ΔR distance between 2 particles (W,b) from top decay
- SM physics & 10 ab^{-1} for FCC-hh: 5M $t\bar{t}$ events with $p_T(\text{top}) > 3\text{ TeV}$

SSC TDR:
- mentions substructure signatures and large R-jets for boosted Z (SSC-SR-1217 TDR 1992 p 3-26)

LHC:
- Boosted signatures is one of the major topics

FCC-hh:
- Detector design will be based on boosted signatures for top, Z/W, Higgs + modern techniques
Detector requirements driven by physics at 100 TeV

- Good containment up to $p_T(jet) \sim 30$ TeV: $12 \lambda_I$ for ECAL+HCAL
 - affects jet energy resolution
 - leakage biases, etc.

- Small constant term for HCAL energy resolution: $c < 3\%$
 - dominates jet resolution for $p_T > 5$ TeV
 - important for heavy-mass particles decaying to jets

- Longitudinal segmentation:
 - Not studied

- Sufficient transverse segmentation for resolving boosted particles:
 - baseline $\Delta\eta \times \Delta\phi = 0.025 \times 0.025$ from previous Delphes studies
 - 5x5 cm assuming ~ATLAS-like inner radius (~2.3 m from IP)

Require:
- detailed Geant4 simulations ..
- realistic reconstruction (including particle flow, i.e. tracks!)
SiFCC detector for performance studies

- Re-purpose SiD (ILC) detector and SLIC software
- Leverage large investments to R&D and software designs

- SiFCC (v4) detector: Multipurpose, high granularity, compact detector
 - 30% smaller than ATLAS (R=25 m vs R=19), but with x20 better tracker!
 - 30% larger than CMS (R=14.6 m vs R=19 m)
SiFCC detector vs CMS

Both are optimized for Particle Flow Algorithms
Characteristics of SiFCC (version 4)

- 5 T solenoid outside HCAL
- Pixel and Outer trackers:
 - 20 um pixel (inner), 50 um (outer)
- ECAL (Scint+W): 2x2 cm. 32 layers, ~35 X0
- HCAL (Scint+Fe) ~ FCC-hh baseline
 - 5x5 cm cells: Δη x Δφ = 0.022 x 0.022
 - CMS: Δη x Δφ = 0.087 x 0.087
 - ATLAS: Δη x Δφ = 0.1 x 0.1
 - Longitudinal: 64 layers, 11.3 λ_l
 - 3.1% sampling fraction
 - > 150 million cells, non-projective

trans. cell size: 5 cm ~ λ_l (Fe) / 3

Can reconstruction of TeV-scale objects benefit from small HCAL cells?
Response to single particles: 1 TeV

- Use single pions 1 GeV – 10 TeV to study detector performance
- 1 TeV pions are benchmarks used in arXiv:1604.01415 (shown in Washington DC)
 - $p_T(jet)>30$ TeV: ~10% will be carried by 1 TeV hadrons (~9 hadrons/jet)

Example: 1 TeV π^+

- 7300 calorimeter hits, 440 SiTracker hits
- 1 reconstructed PFA (π^+) =998 GeV
- 1 reconstructed CaloCluster at 1058 GeV
- Many back-splash interactions

Response to single particles: 8.1TeV pions

Example: 8.156 TeV π+

- ~30000 calorimeter hits, ~500 SiTracker hits
- 1 reconstructed PFA (π+)=8.97 TeV
- 1 reconstructed CaloCluster at 8.40 TeV
- Many back-splash interactions

Energy leakage outside HCAL? Energy scale need to be corrected?

Detector response to single particles

Losses of clusters for < 2 GeV charged particles due to 5 T field and increased inner radius to 2.1 m

\[p = 0.3 \times B \times r \]

- \(p \) – momentum (GeV)
- \(B \) - solenoid field (in T)
- \(r \) - is the radius (in m)
Single particle response

- Losses of clusters with low momentum due to 5 T
- Resolution of tracks & PFA getting worse with energy
- Resolution for CaloClusters is better than PFA/tracks for $E > 2$ TeV
 - $\sim 2\%$ for clusters, 5% for tracker near 8 TeV

Estimates based on: $dpT/pT = 8 \times \text{sig} \times pT/(0.3 \times B \times L^2)$ are more conservative
Physics processes for boosted jet studies

- Muon collisions to speed up calculations: no complications due proton beams
- Processes for benchmarks:
 - $\mu+\mu- \rightarrow Z' \rightarrow W+W-$
 - $\mu+\mu- \rightarrow Z' \rightarrow qq$
 - $\mu+\mu- \rightarrow Z' \rightarrow t\bar{t}$
 - $\mu+\mu- \rightarrow Z' \rightarrow \tau^+\tau^-$
 - $\mu+\mu- \rightarrow Z' \rightarrow b\bar{b}$
- Reconstructed samples in the LCIO format assuming:
 - $\Delta \Gamma(Z') \sim 1$ MeV
 - $Z'(20 \text{ TeV})$ and $Z'(40 \text{ TeV})$
- Apply favorite substructure techniques to identify WW, $t\bar{t}$ (compare with $Z' \rightarrow q\bar{q}$)
 - about 2000 fully reconstructed events per sample (Tracks, PFA, CaloClusters, HITS)
 - created on Open-Science Grid (UChicago/ANL. ~100,000 CPU*h)
Event display of Z' (40 TeV) $\rightarrow W^+ W^-$ \rightarrow hadrons

Busy event, large number of back-splash interactions in ECAL/HCAL/Tracker
~ 4 CPU*h to simulate/reconstruct, 16 GB RAM
\rightarrow CPU intensive!

Available for download: $Z' \rightarrow WW$, $Z' \rightarrow t\bar{t}$, $Z' \rightarrow b\bar{b}$ for different Z' masses
Jet masses for highly boosted jets

- Simple observable constructed from energies and positions of jet constituents
 - requires high spatial resolution of jet constituents
 - sensitive to calorimeter granularity
- Critical for many searches by ATLAS & CMS
 - signal extraction, background rejection etc: boosted W, top, Higgs etc.

\[m^2(\text{jet}) = \sum E_i^2 - \sum p_i^2 \]

\[W \rightarrow q\bar{q} \rightarrow \text{jet} \]
Jet masses for highly boosted jets

presented at Boost2015 & FCC week in DC

- DELPHES fast simulation shows significant improvement in mass resolution compared to $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ cells
 - 80% for $\Delta \eta \times \Delta \phi = 0.05 \times 0.05$
 - 120% $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$

From the Gaussian fits:

W mass:
- $\sigma = 23$ GeV (0.1x0.1)
- $\sigma = 20$ GeV (0.025x0.025)

Top mass:
- $\sigma = 24$ GeV (0.1x0.1)
- $\sigma = 21$ GeV (0.025x0.025)

Not too realistic:
- no longitudinal segmentation, secondary interactions, realistic Geant4 reconstruction, high-pT tracking loses, etc. etc.
Jet mass for $W \rightarrow q\bar{q}$ (boosted) in the SiFCC detector

Truth-level jets
- FastJets $R=0.6$
- $p_T(jet)>3$ TeV
- $|\eta(jet)|<1.2$

SiFCC full simulation & reconstruction:
- PFA: $\sigma=29$ GeV, peak=79 GeV
- CaloClusters: $\sigma=31$ GeV, peak=121 GeV

- PFA and CaloClusters have similar jet width (dominated by $p_T \sim 5$ TeV)
- Shift in jet mass for CaloClusters can be due to:
 - large contribution from secondary interactions & spread of particles in 5T field
 - removing soft constituencies (soft drop) reduces the jet mass built from clusters
- SiFFC has larger jet width compared to DELPHES (~ 20 GeV)
Contributions to HepSim software

- E. May - ProMC format development, benchmarks on BlueGene/Q (ANL)
- K. Strand (SULI 2014) - ProMC conversion tools
- P. Van Gemmeren - testing ProMC format
- T. Sjöstrand - ProMC integration with Pythia8
- P. Demin - ProMC integration with Delphes
- I. Pogrebnyak - (U.Michigan) software validation toolkit, fastjet in Java
- D. Wilbern (SULI 2015) - Pileup mixing tool based on ProMC
- M. Selvaggi - Delphes card for ILD geometry and “EIC”-like (requested by S.C.)
- H. Gray - Delphes card for FCC-hh geometry
- J. Strube (PNNL) - LCIO/SLIC for full simulation
- A. Kotwal (Duke Univ.) - LCIO/SLIC for full simulation
- J. Adelman (NIU) – H+tt sample + post-Snowmass Delphes 3.3 card for 13/14 TeV
- S. Padhi - prototyping Snowmass Delphes 3.1 during Snowmass 2013
- K. Pedersen - alternative b-tagging for rfast003 in HepSim
- Shin-Shan Yu - Heavy Higgs MG5 simulations for HepSim

A lot of help / advise from J.McCormick and N.Graf (SLAC)
Documentation

Physics and detector studies

Here are several links to extending this Wiki for particular detector-performance topics:
- FCC-hh detector studies - explains how to analyses data for FCC-hh detector studies
- SID detector studies - explains how to analyses data for the SID detector (ILC)
- CEPC detector studies - shows some results with full simulations for CEPC
- EIC detector studies - shows some results with full simulations for EIC
- HCAL studies explains how to analyse ROOT data after fast detector simulations used for FCC studies

- Many examples are coded in Python/Jython and C++

- Look at this book describing much of the Python/Java API →
How to contribute to HepSim

- Generate EVGEN archive files with physics processes
- Validate using the HEPSIM tools (if you can)
- Contribute to the software tools
- Run a data server and maintain your own EVGEN & full simulation files

Support (limited, on a voluntary basis): (contact hepsim@anl.gov)

- HEPSIM integration, deployment, OSG-grid, EVGEN MC, fast sim etc.
 - ANL: S.C.
- Some support for SLIC software (used for ILC)
- Configure detectors, physics, analysis package for circular colliders
 - ANL/Fermilab: S.C., A.Kotwal

Thanks!
Benchmarks for EVGEN files

File sizes for 10,000 $t\bar{t}$ events for pp at LHC

<table>
<thead>
<tr>
<th>File format</th>
<th>File Size (MB)</th>
<th>C++ (sec)</th>
<th>CPython (sec)</th>
<th>Java (sec)</th>
<th>Jython (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProMC</td>
<td>307</td>
<td>15.8</td>
<td>980</td>
<td>11.7 (12.1 + JVM startup)</td>
<td>33.3 (35 + JVM startup)</td>
</tr>
<tr>
<td>ROOT</td>
<td>423</td>
<td>20.4</td>
<td>66.7 (PyROOT)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LHEF</td>
<td>2472</td>
<td>84.7</td>
<td>30.4</td>
<td>9.0 (9.6 + JVM startup)</td>
<td>-</td>
</tr>
<tr>
<td>HEPMC</td>
<td>2740</td>
<td>175.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LHEF (gzip)</td>
<td>712</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LHEF (bzip2)</td>
<td>552</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LHEF (lzma)</td>
<td>513</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HEPMC (gzip)</td>
<td>1021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HEPMC (bzip2)</td>
<td>837</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HEPMC (lzma)</td>
<td>802</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1. Benchmark tests for reading files with 10,000 ttbar events stored in different file formats. For each test, the memory cache on Linux was cleared. In case of C++, the benchmark program reads complete event records using appropriate libraries. CPython code for ProMC file is implemented in pure CPython and does not use C++ binding (unlike PyROOT that uses C++ libraries). In case of LHEF files, JAVA and CPYTHON benchmarks only parse lines and tokenize the strings, without attempting to build an event record, therefore, such benchmarks may not be accurate while comparing with ProMC and ROOT.

NLO calculations as “ntuples”

Theorists can use it too!

- Several NLO calculations are available (MCFM, JETPHOX, NLOjet++)
- Data structure is different compared to full parton-shower MC
 - “Particle record”: Usually 4-momenta of 3-4 particles per events
 - “Event record”:
 - Event weights (double)
 - Deviations from central weights for different PDF eigenvector sets for calculations of PDF uncertainties

\[
\begin{align*}
 w_n &= \left[1000 \times \left(1 - \frac{PDF(n)}{PDF(0)}\right)\right] \\
 n &= 1\ldots51 \text{ for CT10 PDF}
\end{align*}
\]

Very large numbers of weighted NLO events can be compactly stored:

→ *double precision “weights”* → *int64 varint (deviations) → 2 bytes per weight*
→ *Large deviations are stored using 4 or 8 bytes (rarely)*
NLO calculations as “ntuples”

MCFM prediction for $H(\rightarrow \gamma\gamma)$+jet (pp 100 TeV) “higgsjet_gamgam_mcfm” sample

Some NLO samples using MCFM have been created on Mira supercomputer (BlueGene/Q)

4-momenta of particles

Event weights

PDF variations for CT10 (51)

Future of HEP and simulations for the Energy Frontier. S.Chekanov (ANL)
Estimating HCAL depth

Leading particles in high-pT jets
C.Helsens, C.Solans

\[\sqrt{s} = 100 \text{ TeV} \]

Average number of hadrons above a given \(E \)

- \(\text{Jet pt}=1\text{TeV} \)
- \(\text{Jet pt}=5\text{TeV} \)
- \(\text{Jet pt}=10\text{TeV} \)
- \(\text{Jet pt}=20\text{TeV} \)
- \(\text{Jet pt}=30\text{TeV} \)
- \(\text{Jet pt}=40\text{TeV} \)

\(\lambda \) is needed to contain 98% of energy of a 1 TeV hadron

- Geant4 simulation agrees with calculations for SSC (.. 1984 Gordon&Grannis. Snowmass)

\[\text{pT(jet)} > 30 \text{ TeV: } \sim 10\% \text{ will be carried by 1 TeV hadrons} \sim (9 \text{ hadrons/jet}) \]

- \(12 \lambda \) is needed to contain 98% of energy of a 1 TeV hadron

Future of HEP and simulations for the Energy Frontier. S.Chekanov (ANL)
Resolution for single pions

ATLAS-like setup based on Geant4

\[\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c \]

- **a** – stochastic/sampling term
- **b** – electronic noise term
- **c** – constant term

“c” dominates for jet with $p_T>5$ TeV

- Geant4 TileCal inspired simulation based on FTFP_BERT
- Calculate single-particle resolution
- Stochastic term is close to $45%/\sqrt{E}$
- Constant term improves by ~20% with increase of $1\lambda_I$

Constant term $c\sim2.5\%$ is achievable for $12\lambda_I$