FEEDBACK & DISCUSSION

Snowmass 2021 Cosmic Frontier 5 Topical Report Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before

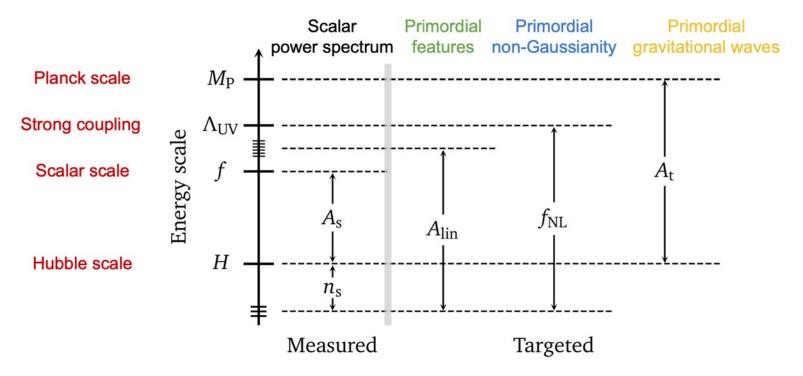
S. Ballmer, C.L. Chang¹, D. Green, R. Hlozek, K. Huffenberger, K. Karkare, A. Liu, V. Mandic, J. McMahon, L. Newburgh¹, and D. Shoemaker¹

¹Topical Group Convener

EXECUTIVE SUMMARY

Targeting this decade (~2025-35) with and eye towards 2050

- Scientific themes
 - Inflation: explore, constrain, discover physics beyond A_s and n_s
 - Tensor perturbations, non-Gaussianity, deviations from scale invariance
 - Relic radiation: constrain and discover physics beyond cosmic microwave and neutrino backgrounds
 - Light relics, new phases, neutrino physics
- Major facilities
 - CMB-S4, Current GWOs, new Stage-V Spectroscopic survey
- Enabling capabilities
 - Theory aligned w/ facility science: model building, predicting and calculating new observable phenomena, modeling and simulating astrophysical and cosmological signals, and building analysis pipelines.
 - Instrumentation to enable next-decade facilities (CMB, GWO, LSS via 21-cm & CO/CII Intensity Mapping) through fielding small experiments.

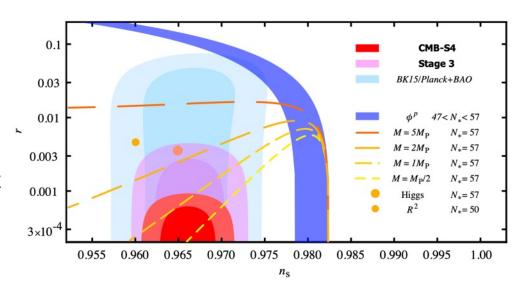


INFLATION

Beyond A_s and n_s

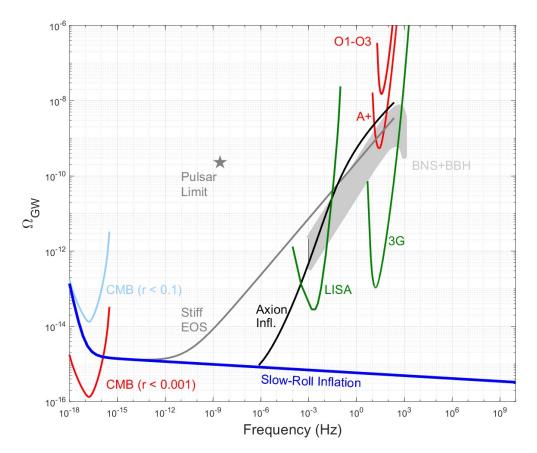
→ Access to new energy scales and detailed dynamics of inflation.

arXiv:2203.08128

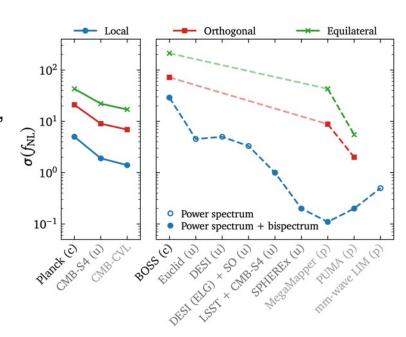

INFLATION

Beyond A_s and n_s

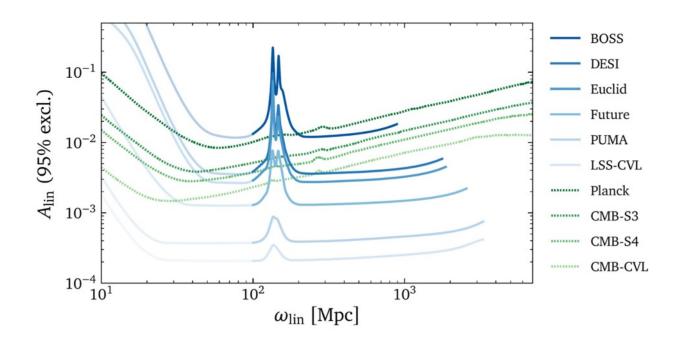
- Primordial GWs
 - Sourced by inflation, amplitude is related to energy scale, constrains distance traveled by inflaton
 - Detection would offer glimpse of quantum gravity?
 - Active area of theoretical research. Non-detection constrains model space.
- Non-Gaussianity
 - Robust probe of inflationary interactions (number of light degrees of freedom, curvature self-interactions)
 - Active area of theoretical research (cosmological collider physics, connections to Standard Model of particle physics, non-perturbative techniques for rare-but-large fluctuations, ...)
- Features in primordial spectra
 - Generic in broad classes of models beyond simplest. New energy scales.
 - Ubiquitous when connecting inflationary modeling to fundamental physics


PRIMORDIAL GWS

- r ≥ 0.01
 - Super-Planckian inflaton field excursion,
 - Evidence for approximate shift symmetry in quantum gravity.
- $r \ge 0.001$
 - Evidence for the simplest models of inflation which naturally predict observed n_s and have a characteristic scale > M_P.
- r ≤ 0.001
 - Vast restriction of inflationary model space


PRIMORDIAL GWS

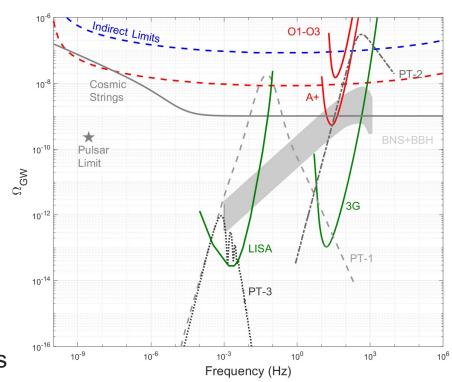
- Simple inflation models predict scale invariant GW spectrum
 - Out of reach of envisioned instruments
- Richer physics can modify PGW spectrum
 - Potentially detectable with GWOs as SGWB
 - Multiple observations constrain amplitude and spectrum


NON-GAUSSIANITY

- $f_{NI}^{local} \gtrsim 1$
 - Differentiate models with extra light species during/after inflation.
- f_{NI} equil, ortho $\gtrsim 1$
 - Inflaton likely has subluminal sound speed,
 - Constrain the symmetry breaking patterns of inflation.
- Detailed shape information:
 - Detect new particles mediating selfinteractions & particle spectroscopy.
- Non-detection:
 - Constrain large classes of models,
 - Point to favored directions in "theory

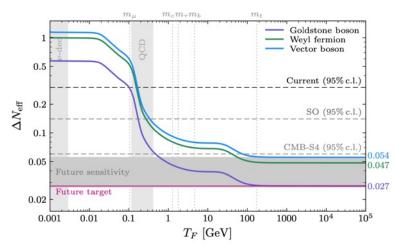
PRIMORDIAL FEATURES

 Improve constraints by more than an order of magnitude


RELIC RADIATION

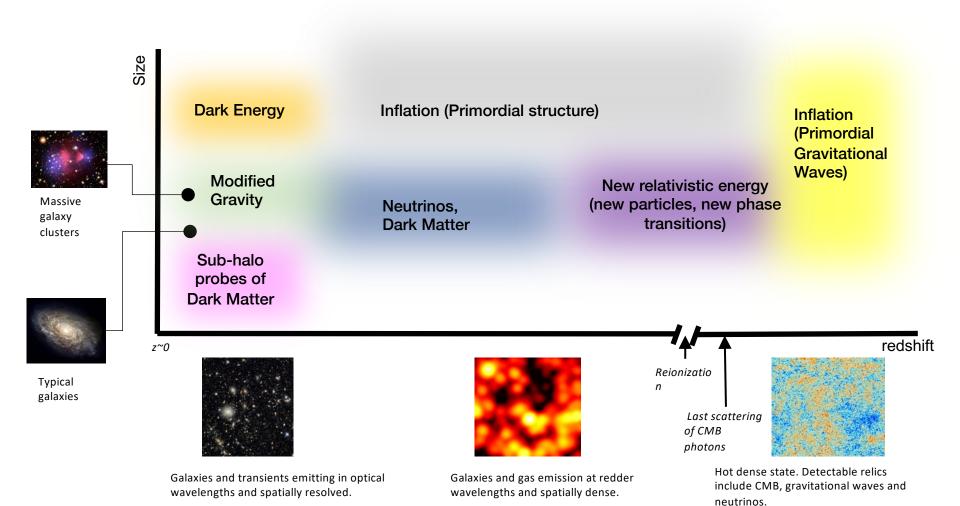
$$\rho_r = \rho_\gamma \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right)$$

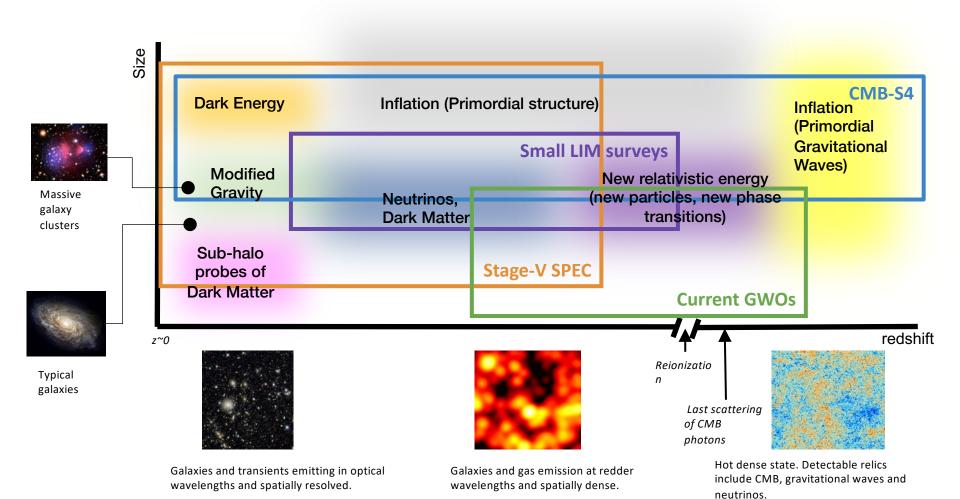
- "Hot Big Bang" + SM
 - Only relics nuclei, CMB, CNB (and CDM, which isn't SM…)
 - Predicted CNB energy density is N_{eff} = 3.045
 - Detection of any departure from this predicted energy content is direct evidence of new physics

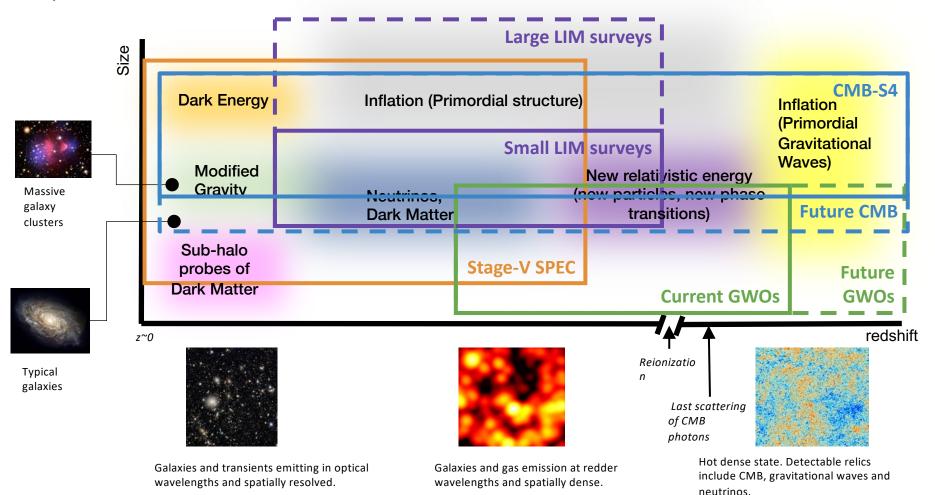

RELIC GWS

- First Order Phase Transitions
 - QCD transition, multi-step phase transitions, B-L breaking, flavour physics, axions, GUT symmetry breaking chains, supersymmetry breaking, hidden sector involving scalars, neutrino mass models, confinement
 - New physics making EWSB a FOPT complements collider searches
- Topological defects
 - domain walls, textures, cosmic strings

RELIC PARTICLES


- New physics that addresses hierarchy problem, Strong CP problem, cosmological constant problem, dark matter
 - Often include degrees of freedom that decouple in early universe
 - △N_{eff}, small scale clustering
- Axions & ALPs
 - solve the strong CP problem, the hierarchy problem, inflation naturalness
 - naturally arise in string theory as modulus fields from dimensional compactification
 - ΔN_{eff}, small scale clustering, isocurvature perturbations, birefrigence





This decade...

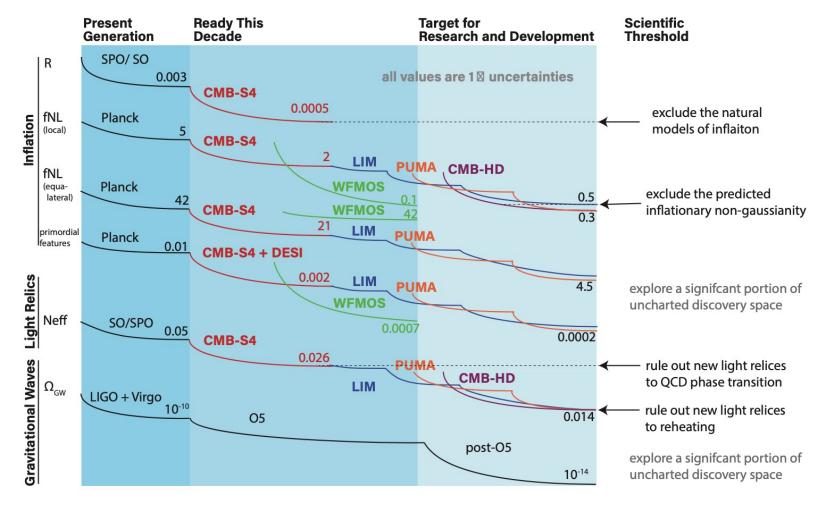
... eye towards the next decade



EARLY UNIVERSE FACILITIES IN THIS DECADE

- Search for inflationary GWs (A_t)
- Measure primordial spectrum (A_{lin}, f_{NL})
- Measure relic radiation

Stage-V spec.



- Measure primordial spectrum (A_{lin}, f_{NL})
- Measure relic radiation
- Measure more modes than CMB

LIGO/VIRGO/KAGRA

- Search for non-scale invariant inflationary GWs
- Measure relic GWs from new physics

THEORY

Some examples (not comprehensive)

- Fundamental theoretical insights about models and observables
 - Historical e.g.: theory of CMB acoustic oscillation framework, BAO
 - E.g.: research into non-gaussianity (evading CVL? Ortho and equi bispectra?)
 - E.g.: research into phase transitions, GW-CMB correlations.
- Foreground modeling
 - Dust (CMB polarization), galactic emission (21-cm), line confusion (mm-wave LIM), binary mergers (SGWB)
- Simulations
 - Astrophysical modeling (large range of scales, cross correlation, error estimation)
 - Pipeline development (signal processing, map-making of large volumes of data, foreground cleaning, parameter sampling)
 - Coordinated development of shared tools vs bespoke software

INSTRUMENTATION

Develop the foundation for facilities in the following decade

- CMB: increased detector density (at high frequency), large optics for higher angular resolution
- 21-cm: calibration/stability, digitization & timing, RFI shielding & removal, real time signal processing
- Mm-wave LIM: large focal planes of on-chip spectrometers, increase pixel packing density, increase spectroscopic resolving power, reduce readout cost
- GWO: improvements in squeezing and quantum metrology techniques, production of large (320 kg) low-loss fused silica optics for test masses, optical coatings with reduced mechanical dissipation, low-cost ultra-high vacuum system, improved active seismic isolation
- Requires more than lab demonstrations, fielding new technology (e.g. smaller pathfinder experiments, staged development) is critical
 - Develop integrated systems
 - Mature understanding of experiment operations and systematics

EXECUTIVE SUMMARY

Targeting this decade (~2025-35) with and eye towards 2050

- Scientific themes
 - Inflation: explore, constrain, discover physics beyond A_s and n_s
 - Tensor perturbations, non-Gaussianity, deviations from scale invariance
 - Relic radiation: constrain and discover physics beyond cosmic microwave and neutrino backgrounds
 - Light relics, new phases, neutrino physics
- Major facilities
 - CMB-S4, Current GWOs, new Stage-V Spectroscopic survey
- Enabling capabilities
 - Theory aligned w/ facility science: model building, predicting and calculating new observable phenomena, modeling and simulating astrophysical and cosmological signals, and building analysis pipelines.
 - Instrumentation to enable next-decade facilities (CMB, GWO, LSS via 21-cm & CO/CII Intensity Mapping) through fielding small experiments.