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Quick recap of how we got here
~150 LOIs submitted to CF1 (including cross lists) - huge amount of
community interest and ideas, the most of any CF topical group!

We identified a few broad science themes split into 8 “Big Question” white
papers.



“Big Questions” white papers - can still be updated! (barely)

Title Editors Arxiv
Dark Matter Direct Detection to the Neutrino Fog P. Cushman, B. Loer, R. Gaitskell, C. Galbiati 2203.08084
The landscape of low-threshold dark matter direct

detection in the next decade R. Essig, G. Giovanetti, N. Kurinsky, D. McKinsey 2203.08297
Calibrations and backgrounds for dark matter direct

detection D. Baxter, R. Bunker, S. Shaw, S. Westerdale 2203.07623
Modeling, statistics, simulations, and computing needs

for direct dark matter detection Y. Kahn, M.E. Monzani, K. Palladino 2203.07700
The landscape of cosmic-ray and high-energy-photon

probes of particle dark matter T. Aramaki, S. Profumo, P. von Doetinchem 2203.06894
Puzzling Excesses in Dark Matter Searches and How

to Resolve Them L. Yang, R. Leane, S. Shin 2203.06859
Synergies between dark matter searches and

multiwavelength/multimessenger astrophysics P. Harding, S. Horiuchi, D. Walker 2203.06781
Ultraheavy particle dark matter D. Carney, N. Raj 2203.06508

Many additional white papers submitted
Useful link to all Snowmass White Paper database

compiled by Kristi Engel and Tiffany Lewis



https://arxiv.org/abs/2203.08084
https://arxiv.org/abs/2203.08297
https://arxiv.org/abs/2203.07623
https://arxiv.org/abs/2203.07700
https://arxiv.org/abs/2203.06894
https://arxiv.org/abs/2203.06859
https://arxiv.org/abs/2203.06781
https://arxiv.org/abs/2203.06508
https://docs.google.com/spreadsheets/d/1NNUGid_Wd4VnGUW9SwIVQy5ziWHaGfCanRTaTt21NoU/edit#gid=0
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CF1: Particle-Like Dark Matter Exec Summary

e Particle dark matter is theoretically well-motivated
Dig deep, search wide - A diverse portfolio of experiments and tools maximizes the
possibility of discovering particle dark matter
o Motivation for experiments at various scales and level of technological maturity
e Understanding how signals and backgrounds manifest in a search is essential to
making a robust detection
o  Support of calibration, modeling, and simulation efforts is crucial to enable discovery

| | | | | //
Da— | | | | 7/ >
eV keV MeV GeV TeV

dark photon DM

models

freeze-in DM
sterile v

Many theoretically-motivated models!
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Goals for indirect-detection experiments

General aims:

e Improve sensitivity to dark matter across the broadest possible energy range (we explore
keV—Planck scale) using an array of cosmic messengers

Experiment-specific aims:

e Probe the minimal version of the thermal freezeout target over its full natural mass range,
up to the O(100 TeV) scale set by the unitarity bound [APT, CTA, LHAASO, SWGO] -
provides uniquely model-agnostic probe of (s-wave) thermal relics

e Close the “MeV gap” in gamma-ray sensitivity [AMEGO-X, COSI, GECCO, GRAMS,
GammaTPC, SMILE]

e Pursue the first detection of low-energy antinuclei as a zero-background channel [ADHD,
ALADInO, AMS-100, GAPS, GRAMS]

e Improve sensitivity to monochromatic line signals in X-rays and (not currently listed, but
could be added) exclude the minimal sterile neutrino [XRISM, Micro-X, Athena, HEX-P]



Some new preliminary figures

Discovering cosmic-ray antideuterons

— — — — —
o o o o o
4 & & A '

antideuteron flux [(s m?sr GeV/n)

S
b

107°

107

funded

I lllllnl T IIHIII]

current exclusion

near term

[ yx— bb, 70GeV
Il secondary
[ tertiary

" "+« yision beyond 2030

....

10"

1

10

Credit: Philip von Doetinchem kinetic energy [GeV/n]

Closing the minimal sterile neutrino window
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Importance of complementary probes

We discuss a number of avenues to better characterize:

e Cosmic ray production, composition, and propagation

e (Galactic diffuse photon emission

e The dark matter density distribution

o cefc...

These studies would enable future sensitive indirect searches and provide
pathways to resolving current puzzling excesses in the data.

In addition, we discuss a range of theory and analysis needs and opportunities,
including new sophisticated analysis methods, data sharing and open software,
and production and propagation of signals from ultraheavy DM.



Direct detection
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Goals: Digging deep - to the neutrino fog
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Goals: Searching wide -

Enable detection of light dark
matter causing tiny energy
depositions via scattering,
absorption, etc

Wealth of possibilities for
detection techniques, explored in
DMNI - possible synergies with
photonics, materials science,
condensed matter

low-threshold experiments
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Physics targets and reach

Near-term experiments will:

e probe eV-scale recoils

e test new possibilities for
production of DM (eg via
freeze-in)

e test new interactions (electron
scattering, absorption)

In the further future, thresholds at the
meV level may be reachable.
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Figure 6: Figures are from Ref. [2] and updated from BRN report [29]. Current 90% c.l. constraints are
shown in beige. Approximate regions in parameter space that can be explored in the next ~5 years (“near-
term”, green) and on longer timescales (“far-term”, blue). Orange regions labelled “Key Milestone” represent
concrete dark-matter benchmark models and are the same as in the BRN report [29]. Along the dotted line
DM would produce about three events in an exposure of 100 gram-year, assuming scattering off electrons in
a hypothetical target material with zero threshold.



Dark matter-nucleon cross section [cm~|

Figure discussions ongoing - working session tomorrow at 2 pm
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Amplify the larger DM message (CF1-3, NF, RF, EF, TF)

e Dark matter is high priority for particle physics over next decade
o One of two 2014 science drivers that crosses all frontiers (along with
Explore the Unknown...)
o See plenaries from yesterday - huge increases in sensitivity on multiple
tracks expected in next decade
e Parameter space has opened up since last Snowmass but we are following a
strategy
o Dig deep into particular regions that are well motivated with
mature/maturing technologies - support for larger experiments
m (although in CF at least, still moderate relative to other parts of HEP
program)
o Search wide to explore low hanging fruit, develop the new technologies
and new generation of workforce - portfolio of smaller experiments



Are these the right messages to emphasize”? Do you
disagree with anything? Are we missing important
elements?



Figures

Informative summary figures can effectively summarize key messages and are probably the
elements of our report most likely to be widely reproduced

Informal feedback from CF conveners:
-focus on figures
-need a summary sensitivity figure for indirect detection [in progress]

-where not already present, consider adding benchmark models to demonstrate sensitivity

What figures are we missing? What needs to be improved? What (if any) benchmarks
should we show? Should we think about shared figures with other TGs?
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Figure 1: Overview of current, upcoming and proposed missions for cosmic rays (upper panel) and X-rays
(lower panel). Current/previous, near-term, and further future missions are marked in red, dark blue and
teal respectively. Solid lines/symbols indicate funded experiments while dashed lines or empty symbols
indicated proposed experiments. Lines indicate satellite or ground-based missions, stars indicate individual
balloon flights, and circles indicate beam tests. Reproduced from Ref. [5].



Fig. 2

From WP5
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Figure 2: Overview of current, upcoming and proposed missions for gamma-rays in the GeV-TeV+ band
(upper panel) and MeV band (lower panel). Current/previous, near-term, and further future missions are
marked in red, dark blue and teal respectively. Solid lines/symbols indicate funded experiments while dashed
lines or empty symbols indicated proposed experiments. Lines indicate satellite or ground-based missions,
stars indicate individual balloon flights, and circles indicate beam tests. Reproduced from Ref. [5]



Snowmass2021 Cosmic Frontier Particle Dark Matter Report
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Figure 3: Cartoon figure of the model space for direct detection. Included are candidates of thermal dark
matter, supersymmetry, asymmetric dark matter [183], SIMP /Elder [178-181], dark monopoles [184], WIM-
Pzillas [14], and hidden sector dark matter [21]. Note that the interaction cross-section can be for either
scattering with nucleons or electrons, depending on the specific model.
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Fig. 6

From WP2
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Figure 6: Figures are from Ref. [2] and updated from BRN report [29]. Current 90% c.l. constraints are
shown in beige. Approximate regions in parameter space that can be explored in the next ~5 years (“near-
term”, green) and on longer timescales (“far-term”, blue). Orange regions labelled “Key Milestone” represent
concrete dark-matter benchmark models and are the same as in the BRN report [29]. Along the dotted line
DM would produce about three events in an exposure of 100 gram-year, assuming scattering off electrons in
a hypothetical target material with zero threshold.



Fig. 7

From WP8

Snowmass2021 Cosmic Frontier Particle Dark Matter Report
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Figure 7: Current and projected experimental regions of ultraheavy parameter space excluded by cos-
mological/astrophysical constraints (green), direct detection DM detectors (blue), neutrino experiments
(red/orange), space-based experiments (purple), and terrestrial track-based observations (yellow). Both
models considered here assume different relations for the cross section scaling from a single nucleon to a
nucleus with mass number A. In the left plot, we assume no scaling with A; in the right plot, we assume
the cross section scales like A* (e.g. , with two powers coming from nuclear coherence, and two from kine-
matic factors). Limits are shown from DEAP-3600 [205], DAMA [206, 207], interstellar gas clouds [208,
209], a recast of CRESST and CDMS-I [210], a recast of CDMS and EDELWEISS [211, 212], a detector
in U. Chicago [213], a XENONIT single-scatter analysis [214], tracks in the Skylab and Ohya plastic etch
detectors [207], in ancient mica [215], the MAJORANA demonstrator [214], IceCube with 22 strings [216],
XQC [217], CMB measurements [218, 219], and IMP [220]. Also shown is the future reach of the liquid
scintillator detector SNO+ as estimated in [185, 221]. Reproduced from Ref. [8].
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BONUS SLIDES



Executive summary first paragraph

One of the most important scientific goals of the next decade is to reveal the
nature of dark matter (DM).

A diverse, continuous portfolio of experiments that includes both direct and indirect
detection techniques at multiple scales maximizes the possibility of discovering
particle dark matter.

Detailed calibrations and modeling of signal and background processes are
required to make a convincing discovery.

The US has a leading role in both direct and indirect detection dark matter
experiments — to maintain this leading role, it is imperative to continue funding
major experiments and support a robust R&D program.



