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CFO03: Cosmic Probes of Dark Matter

Cosmological and astrophysical measurements provide the only robust, positive
empirical measurements of dark matter.

Cosmic probes are unique in that they do not rely on the assumption that dark matter
has interactions with normal matter beyond gravity; thus they are the most “expansive”
(and could be the only viable) approach to the dark matter problem.

Cosmic probes is an emergent field that requires strong synergy among particle
theorists, dynamists, simulators, observers, and experimentalists; need a new
mechanism to support these emerging, collaborative efforts.

Cosmic probes are highly relevant and complementary to search efforts in CF1, CF2,
CF7 and other frontiers, and there is strong experimental synergy with cosmological
probes of dark matter, dark energy, and inflation (CF4, CF5, CF6).
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Letters of Interest and Solicited White Papers

e CFO03 received ~75 Letters of Interest from the community.

e Through a series of discussions (including the Community Planning Meeting),
we arrived at a list of 5 solicited white papers with designated facilitators. All
have been submitted.

e CFO03 has received 5 additional white papers (to date). Other relevant white
papers include ~15 white papers submitted to other CF topical groups and
other frontiers.

THANK YOU
white paper facilitators and authors!



Authorship extended to white paper facilitators and major contributors.
Please contact us if you have contributed and want to be an author.
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3.1 Three Core HEP Community Priorities

e Current /near-future HEP cosmology experiments have direct sensitivity to dark matter particle physics
[1-3]. Cosmological studies of dark matter should be supported as a key component of
the HEP Cosmic Frontier program due to their unique ability to probe dark matter
microphysics and link the results of terrestrial dark matter experiments to cosmological
measurements.

The construction of future cosmology experiments is critical for expanding our under-
standing of dark matter physics. Proposed facilities across the electromagnetic spectrum, as well
as gravitational waves, can provide sensitivity to dark matter physics, as well as physics of dark energy
and the early universe [4]. HEP involvement will be essential in constructing and operating these
facilities, and optimizing their sensitivity to dark matter physics should be a core consideration in
their design.

Cosmic probes provide robust sensitivity to the microphysical properties of dark matter due to enor-
mous progress in theoretical modeling, numerical simulations, and astrophysical data. Theory, simu-
lation, observation, and experiment must be supported together to maximize the efficacy
of cosmic probes of dark matter physics.




3.1 Five Major Science Opportunities

1. The Standard Model of particle physics and cosmology can be tested at unprecedented levels of precision
by measuring the cosmic distribution of dark matter. These measurements span an enormous range of
scales from the observable universe to sub-stellar-mass systems (e.g., the matter power spectrum, the
mass spectrum of dark matter halos, dark matter halo density profiles, and abundances of compact
objects) [7, 12, 13]. The fundamental particle properties of dark matter (e.g., particle mass, production
mechanism, and interaction cross sections) can lead to observable changes in the distribution of dark
matter. Measurements of the distribution of dark matter should be supported as a key
element of the HEP Cosmic Frontier program to understand the fundamental nature of
dark matter.

. The ACDM model makes the strong, testable prediction that the mass spectrum of dark matter
halos extends below the threshold at which galaxies form [5]. Sub-galactic dark matter halos are
less influenced by baryonic processes making them especially clean probes of fundamental physics of
dark matter. We are on the cusp of detecting dark matter halos that are devoid of baryons through
several cosmic probes (e.g., strong lensing, the dynamics of stars around the Milky Way). The HEP
community should pursue the detection of dark matter halos below the threshold of galaxy
formation as an exceptional test of fundamental dark matter properties.




3.1 Five Major Science Opportunities

3. Extreme astrophysical environments provide unique opportunities to explore dark matter couplings to
the Standard Model that are inaccessible with terrestrial experiments [8]. Instruments, observa-
tions, and theorists that study extreme astrophysical environments should be supported
as an essential means to constrain the expanding landscape of dark matter models.

4. Numerical simulations of structure formation and baryonic physics play a key role in addressing particle
physics questions about the nature of dark matter. HEP computational resources and expertise
can be combined with astrophysical simulation expertise to rapidly advance numerical
simulations of dark matter physics.

. The interdisciplinary nature of dark matter research calls for interagency mechanisms
that support a comprehensive pursuit of scientific opportunities cutting across traditional
disciplinary boundaries.




3.2 - CF3 in a single figure...
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3.3 Dark Matter Halos
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3.3 Complementarity with CF1 (Halos)
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3.4 Numerical Simulations
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Numerical simulations are critically important to

interpret cosmic observations in the context of specific
dark matter particle models.

Collaborations between computation and particle
theory is critical. Problem is well-matched to HEP
computational resource and expertise.
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Need #1: Collaboration between simulators and particle theorists

Need #3: Hydrodynamic simulations for observational targets

Need #4: Compare simulations to data in observable parameter space
Need #5: Fast realizations of observed systems to constrain dark matter
Need #6: Provide guidance to observers about dark matter signatures

Example pipeline for translating between

particle physics and observations.


https://arxiv.org/abs/2203.07049
https://arxiv.org/abs/2203.07049

3.5 Primordial Black Holes and the

Early Universe
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3.6 Extreme Environments in one Figure...
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https://arxiv.org/abs/2203.07984

3.6 Complementarity with CF2 (Extreme Environments)
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3.7 Facilities for Cosmic Probes of Dark Matter

Current/Near-Future Facilities Future Facilities
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https://arxiv.org/abs/2203.06200

3.7 Facilities for Cosmic Probes of Dark Matter

e How do we best address the need from the facilities community?

Dark matter physics associated with current and near-future facilities, such as DESI, Rubin, and CMB-54,
is extremely rich. Dark matter science should be supported within these projects on intermediate scales
in parallel to studies of dark energy and inflation. Such a program will fully leverage the unprecedented
capabilities of these facilities. On large scales, the construction of future cosmology experiments is critical

for expanding our understanding of dark matter physics. HEP involvement will be essential for the design
and construction of these facilities, and dark matter physics should be a core component of their scientific
mission.

e We need to highlight the relevance of technology and expertise of the
HEP community.

e \We need provide more specific goals and quantitative estimates; these
exist for some, but not all facilities.



3.8 Tools for Comic Probes of Dark Matter Physics

e Collaborative Infrastructure - Support through existing HEP Projects
(DESI, Rubin, CMB-S4)

e New Support Mechanisms - Cross-disciplinary support initiatives
(future DMNI, cross-disciplinary funding)

e Artificial Intelligence/Machine Learning - Large complex data sets;
need new tools to analyze them.

e Cosmology Data Preservation - Large legacy data sets; want to
re-analyze for decades to come



3.9 Roadmap to New Physics
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Summary Additional Discussion

Dark matter should be one of (if not the one) highest priority across Snowmass.
Current/near-future cosmic surveys provide direct access to dark matter model space.

Future cosmic survey facilities provide discovery potential across a wide range fo
fundamental physics (dark energy, dark matter, inflation, early universe physics).

New mechanisms for cross-disciplenary support are needed to assemble the expertise
needed to make concrete advances in cosmic probes of dark matter.

Cosmic probes of dark matter complement terrestrial searches (i.e., probe similar models in
different parts of parameter space), inform terrestrial searches (i.e., tell us where the dark
matter is and how it moves), and probe unique parameter space (i.e., self-interactions and
gravitational interactions).



Feedback for Additional Discussion

“Although it is 100% true that everything positive we know about DM comes from
astrophysics, this phrase makes a lot of appearances in the draft. | worry that it is close to
the point of a few uses too many of the phrase, risking annoying the other dark matter
constituencies.”

“... dark matter astrophysics is now a precision science. It wasn'’t exactly this way a decade
ago, and the progress the field has made on observations and precision theory calculations
(in particular, on the simulation side) have been the catalysts for making it be this way.”

“...we need to have some more quantitative projections for sensitivity in order to have
comparisons with other fields / science topics”

“I think there is a consideration of how astrophysical probes of dark matter fit into the whole
cosmic frontier and what are our realistic goals of how astrophysical probes of dark matter
will be featured in an overall cosmic frontier report.”



Feedback for Additional Discussion

“Need target models (if only cartoonish), since these are important for people outside the
field and get reproduced a lot.”

“The Dark Energy Task Force in 2006 was extremely powerful for motivating the
experimental dark energy program (2012—today). Should we ask for a “Dark Matter Task
Force” to assess cosmic dark matter experiments? Is it too risky to ask for this, since we run
the risk of having nothing happen except this task force (i.e., need to wait for next Snowmass

for any future facility support).”



Areas we need further improvement

e Be specific about the scientific goals in both observation and interpretation

e Specify a few key quantities related to dark matter physics, e.g., minimal
halo masses, number of substructures, galaxy mass functions, density
profiles and Neff...

e Specify ways of probing them (lensing, stream, general survey,
spectroscopy), and the associated observational facilities (near-future, and
future)

e Specify what tools are needed to interpret observation results and extract
microscopic properties of dark matter

Many of these points have been discussed in the white papers to some extent; but
we need to sharpen the relevant discussion in the summary report; the discussion
related to the extreme environments in the summary report is more specific
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https://www.usparticlephysics.org/wp-content/uploads/2018/03/FINAL_P5_Report_053014.pdf

CF3-pertinent sessions in Seattle (all times local)

Monday 7/18

Tuesday 7/19

Wednesday 7/20

Thursday 7/21

Saturday 7/23

Sunday 7/24

10am-11am: CF3 discussion - discuss feedback and organize teams for outstanding needs for CF report

8am-12pm: CF/EF/RF/TF dark matter complementarity (20L)
8am-12pm: CF5,6,7 + 4567 complementarity/facilities session Thanks CF1 & CF2!
8am-12pm: |IF2 photon detectors

3.30pm-5pm: Paths to discovery at the Cosmic Frontier (half-plenary, 3 talks)

8am-12pm: all-CF discussion (23Q) will include presentation of key messages from topical groups,
discussion of cross-topical-group plots, tables, etc for Frontier Report

8am-12pm: all-CF discussion (24M) all CF report discussion, panel on synergies with between astrophysics
and particle physics
5.30pm-7pm: Colloquium on Cosmic Frontier Probes of Fundamental Physics (plenary, introduction + panel)

8am-12pm:  IF/CF/NF instrumentation for dark matter and neutrino detectors (21G/22J, merged) - mostly
organized by NF so far - talks and panel discussion, looking for dark matter contributors
IF/CF/CompF instrumentation for the cosmic frontier (21H)
TF/CF cosmic frontier theory (19K) - panel + talks

10am-12pm: NF/CF/TF high energy and ultra-high energy astrophysical neutrinos



Timeline and Logistics

May 25th: Snowmass travel grant application deadline (link)

May 31st: Requested first draft for CF conveners (start to assemble CF report)
July 17th-26th: Snowmass meeting in Seattle.

July 31st: Snowmass reports due to Snowmass (do we know the actual deadline?)
Oct 30th: Final report due to APS + agencies?


http://seattlesnowmass2021.net/travelAward/

