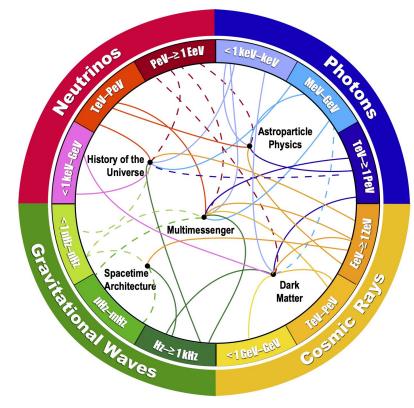
CF7. Cosmic Probes of Fundamental Physics

Conveners: Rana X Adhikari, Luis A. Anchordoqui, Ke Fang, Bangalore Sathyaprakash, Kirsten Tollefson

Early Career Representatives: Kristi Engel and Tiffany Lewis

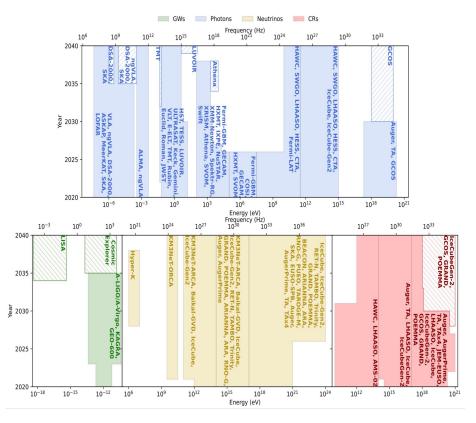
137 Letters of Intent; 12 white papers

Link to CF7 Report: <u>https://www.dropbox.com/s/7aaxxImtcjvxyqb/CF7-report.pdf?dI=0</u>

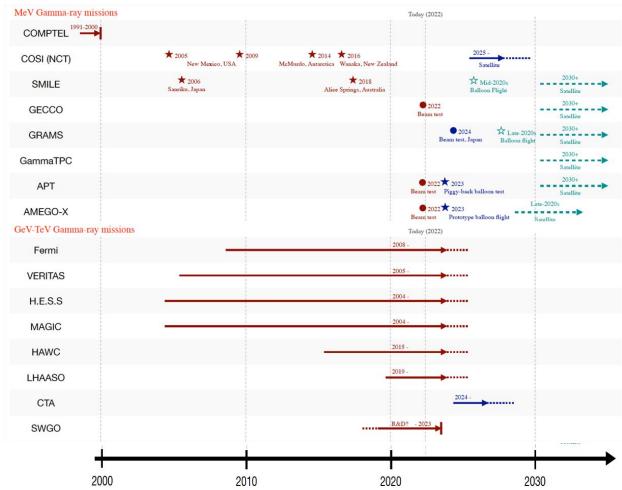

Feedback form:

https://forms.gle/kKuWWPgRaohQ8YqN7

Five main topical areas drived by big science questions with cosmic probes over the next decade:


- History of Universe and Cosmology
- Cosmic Probes of Dark Matter
- Astroparticle Physics
- Multimessenger Synergies in Particle Astrophysics
- Architecture of Spacetime

Solid curve: current existing facilities Dashed curve: future experiments



Multimessenger Synergies in Particle Astrophysics

- Sources of Cosmic Particles
- Extreme-energy particle acceleration and interaction
- **Diffuse backgrounds:** gamma-ray, supernova neutrino, astrophysical diffuse neutrino, cosmogenic neutrino backgrounds, and Galactic diffuse emission
- Galactic TeVatrons and PeVatrons
- Production of heavy elements

Gamma-Ray Instrumentation Roadmap

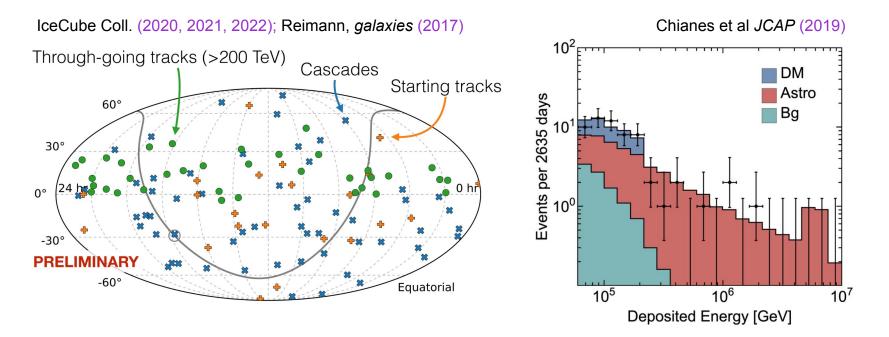
 Current/previous, Near-term, Future

 → --->
 Satellite: funded/proposed

 ★ ☆
 Balloon: funded/proposed

 ● O
 Beam test: funded/proposed

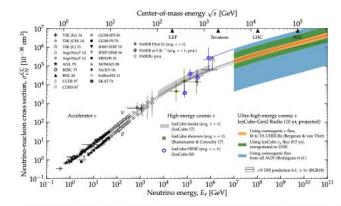
Particle Astrophysics example - TeV halos vs AMS-02 Positron Excess

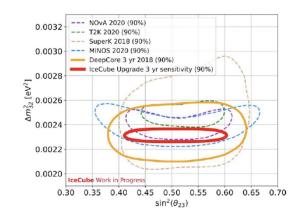

Α

HAWC Coll. Science (2017)

10² 23 10 Geminga E³ J(E) [GeV² m^{- 2} s^{- 1} sr^{- 1}] 18 Dec. [deg] 10⁰ PSR 80656+14 10-13 10^{-2} =4× 10³vr δ=0.33 (base) δ=0.31 Fit param. syst. 109 104 99 δ=0.35 3σ range (base) R.A. [deg] $\tau = 3.6 \times 10^4$ vi AMS-02 e⁺ 10^{-3} 10⁻² 10^{-3} 10⁰ 3 5 10-1 10¹ -4-3 -2 -1Δ Significance [sigmas] Energy [TeV]

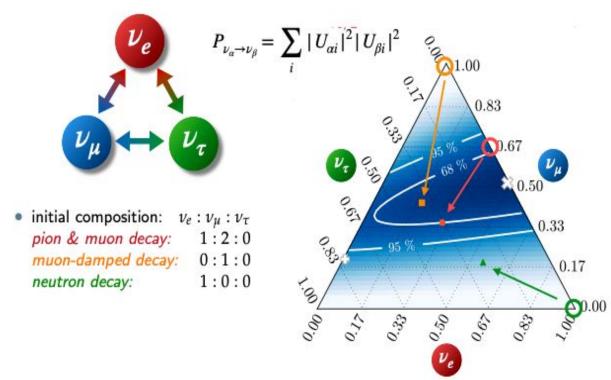
Understanding the astrophysical contribution is crucial to indirect dark matter searches


Particle Astrophysics example - Diffuse High-energy Neutrino Background


Precise measurements of diffuse emission backgrounds are important to indirect searches

Astroparticle Physics

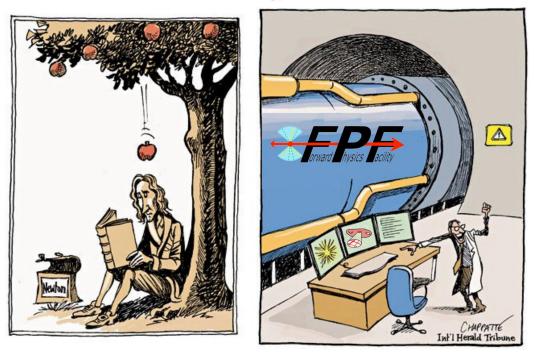
- Standard Model particles and their interactions
- Beyond-Standard-Model (BSM) neutrino physics: BSM neutrino interaction with DM, sterile neutrinos, secret neutrino interactions, neutrino flavors
- Muon puzzle of UHECRs
- Nature of matter in neutron star interiors
- Test of Lorentz and CPT invariance
- Exotic particles in QED domain



Ackermann et al., *HE and UHE neutrino whitepaper* 2203.08096

Updated from IceCube Coll. 1908.09441

Astroparticle Physics in synergy with Neutrino Frontier



Galactic sources of UHECR neutrons + electron antineutrinos unique beam to determine neutrino oscillations parameters

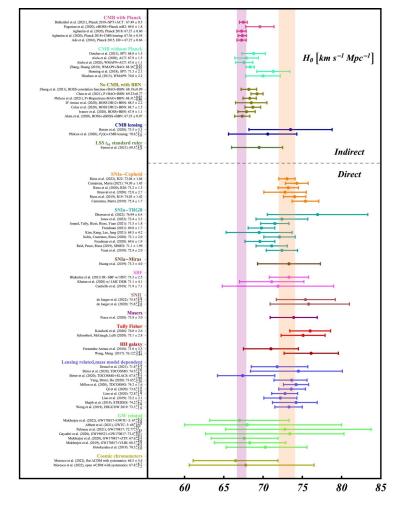
Astroparticle Physics

in synergy with Energy, Accelerator, and Computational Frontiers

Collisions That Changed The World

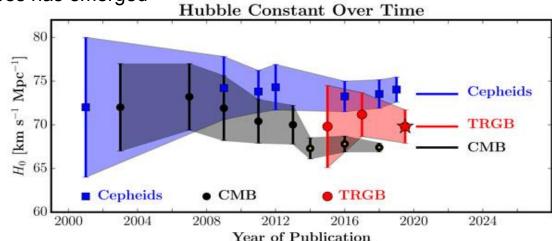
Test of strangeness production: Solving the "muon puzzle" with AugerPrime + CERN's FPF

Instrumentation Roadmap

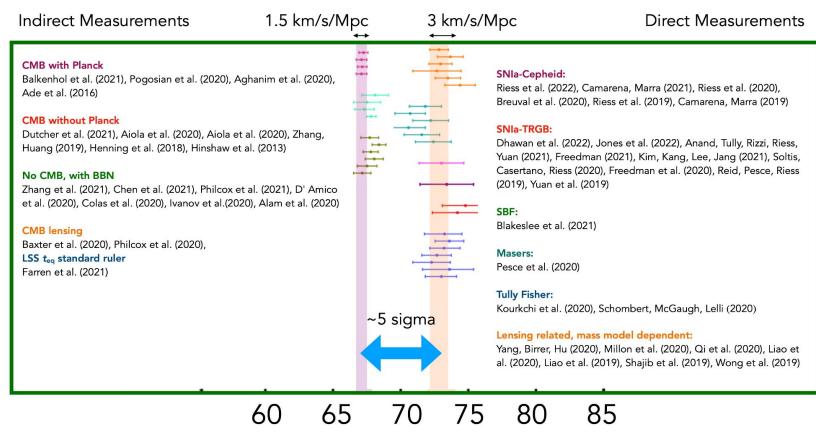

Experiment	Feature	Cosmic Ray Science	Timeline	
Pierre Auger Observatory	Hybrid array: fluorescence, surface e/μ + radio, 3000 km ²	Hadronic interactions, search for BSM, UHECR source populations, σ_{p-Air}	AugerPrime upgrade	
Telescope Array (TA)	Hybrid array: fluorescence, surface scintillators, up to 3000 km ²	UHECR source populations, $\sigma_{\rm p,Air}$	TAXI upgrade	
IceCube / IceCube-Gen2	Hybrid array: surface + deep, up to 6 km ²	Hadronic interactions, prompt decays	Television of the second second second	Cube-Gen2 IceCube-Gen2 ployment operation
GRAND	Radio array for inclined events, up to 200,000 km ²	UHECR sources via huge exposure, search for ZeV particles, σ_{p-Air}	GRANDProto GRAND 300 10k	GRAND 200k multiple sites, step by step
POEMMA	Space fluorescence and Cherenkov detector	UHECR sources via huge exposure, search for ZeV particles, σ_{p-Air}	EUSO program	POEMMA
GCOS	Hybrid array with $X_{max} + e/\mu$ over 40,000 km ²	UHECR sources via event-by-event rigidity, forward particle physics, search for BSM, σ_{p-Air}	GCOS R&D + first si	GCOS further sites
			2025 2030	2035 2044

History of the Universe and Cosmology

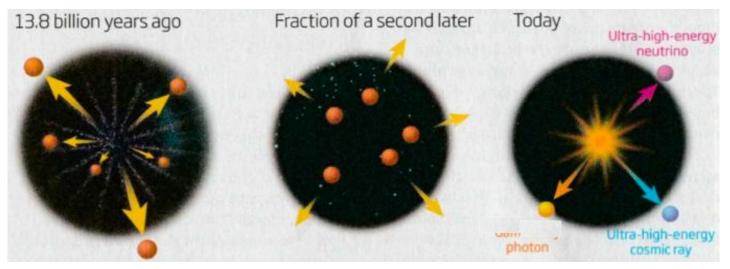
- Hubble constant (H₀) tension (in synergy with CF4-6)
- Imprints from early universe: cosmic strings, primordial GW from inflation, GW from phase transitions
- Super-have dark matter particles produced at the end of inflation: ultrahigh-energy cosmic rays, photons, and neutrinos
- Inferring the Neutrino Mass from Cosmological Probes


NF5-CF7 cross-frontier discussion session in HUB 307 (July 22 8:00 to 12:00)

Abdalla et al., Cosmology Intertwined whitepaper 2203.0614


Hubble constant tension

- After last Snowmass an intriguing inconsistency between measurements of the cosmic expansion rate based on early- and late-Universe probes has emerged
- This inconsistency shows up as a discrepancy in the value of H₀ as inferred from measurements of CMB anisotropies and as measured from a series of distance indicators in the local Universe


- Depending on which set of measurements one combines > tension between model-dependent and independent estimates of H₀ sits between 4.5σ to 6.3σ
- The H₀ tension has become new cornerstone of modern cosmology and many new-physics setups are rising to the challenge
- > Is the H_0 tension a footprint of BSM physics?
- > Roughly 50 GWSS with EM counterparts would be needed to measure H_0 to 1% precision

High Precision Measurements of the Hubble Constant

H₀ (in km/s/Mpc)

Birth and death of superheavy X-particles

- > Intense fluctuating gravitational fields gave birth to superheavy X-particles just after the big bang
- > The expansion of space during inflation distributed the X-particles through the cosmos
- > After billions of years the X-particles decay producing a range of detectable particles

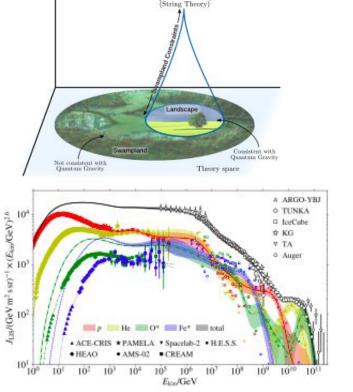
particle physics factor (solving DGLAP numerically)

> To estimate the flux of detectable particles we need to evaluate:

astrophysical factor (with roughly 10% uncertainty)

- X-particle have GUT scale masses background free dark matter indirect detection experiments!
- > A clear detection of an extreme energy photon would be momentous discovery

Quantum Gravity Constraints on Low Energy Dynamics in synergy with Theory Frontier


Swampland: IR consistent QFTs that cannot be embedded into a UV complete QGT

- This sorting of QFTs by their consistency with gravity has become an unexpectedly powerful theoretical tool offering potential solutions to the problems of fine-tuning
- > E.g. Cosmological Hierarchy Problem $\Lambda \sim 10^{-122} M_{
 m Pl}^4$
- > Local EFT breakdown at higher-dim Planck scale:

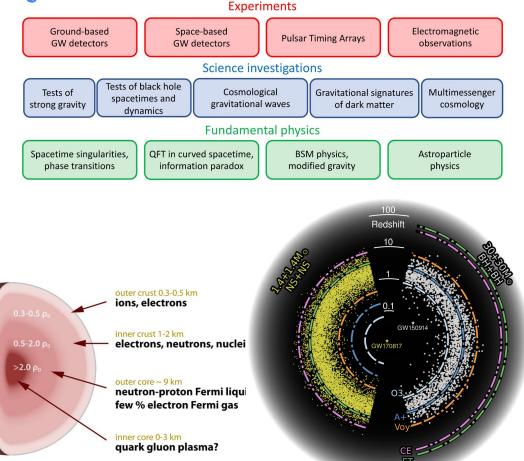
 $M_{\rm UV} \sim \lambda^{-1/3} \Lambda^{1/12} M_{\rm Pl}^{2/3} \sim 10^{10} {\rm ~GeV}$

- > Is the cutoff of the CR spectrum driven by $M_{\rm UV}$?
- > Connection to the H_0 tension?

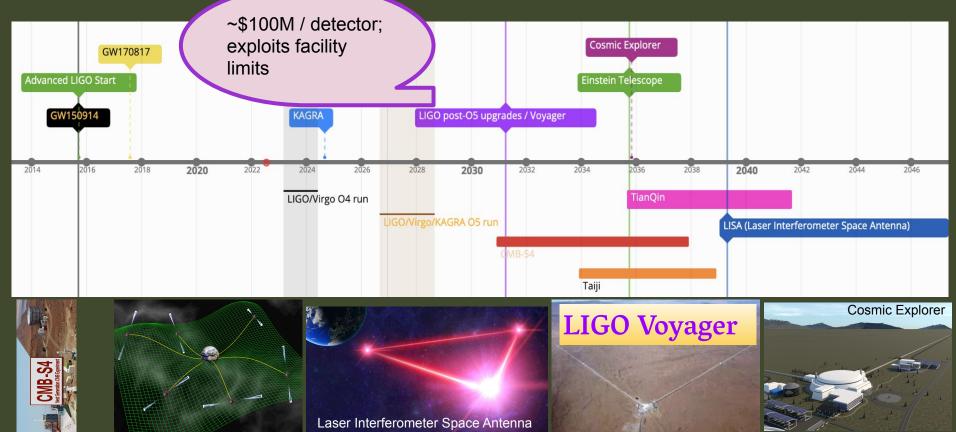
See Montero-Vafa-Valenzuela arXiv:2205.12293

Quantum Gravity

Energy

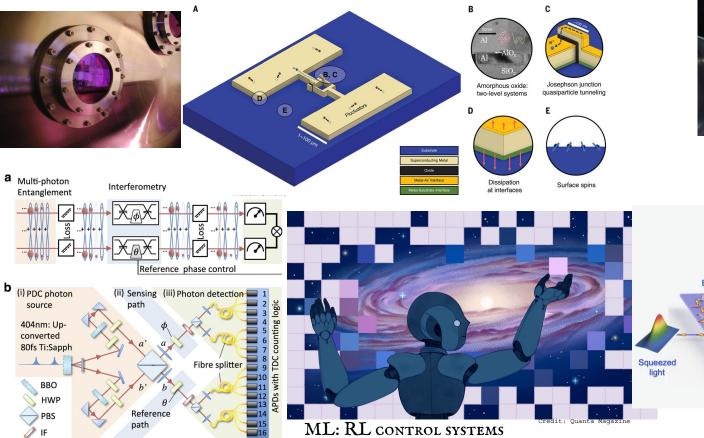

Cosmology of non-minimal dark sectors

Dynamical Dark Matter (DDM) is a framework for non-minimal dark sectors which posits that the dark matter in the Universe comprises a vast ensemble of interacting fields with a variety of different masses, lifetimes, and cosmological abundances
Atoms


- Distinctive probe of secluded dark sectors
- Atoms 4.9% Dark Energy 68.3% Dark Matter Total (now) 26.8% Decayed in the past Time Atoms
- Dark-to-dark decays modify the way in which the expansion rate of the Universe evolves with redshift
- > E.g. dark-to-dark decays of a DDM ensemble alter the dependence of H(z) on z and so DDM framework can potentially provide a way of addressing the H_0 tension
- 13 "take-away lessons" for Snowmass 2021 see Dienes and Thomas arXiv2203.17258:

Gravitational Waves: Key Science Questions

- Black holes and neutron stars throughout the Universe
 - Axion clouds around black holes
 - Primordial black holes
- Dynamics of dense nuclear matter
 - Equation of state ($p > IO^{17} kg/m^3$)
 - QCD phase diagram
 - Synthesis of heavy elements in the Universe
 - Synergies w Rare Isotope studies (e.g. FRIB)
- Physics beyond the standard model
 - Dark matter in neutron stars
 - Modified gravity; spacetime structure
 - What is the nature of BH Horizons?
 - Boson stars and other exotic objects
 - $\circ~$ Precision cosmology for H $_{\rm o}$ and dark energy



GRAVITATIONAL WAVES: FACILITIES AND TIMELINE

Pulsar Timing Arrays

GW INSTRUMENTATION ROADMAP*

UHV tubes ~ 10-40 km

*MANY SYNERGIES WITH EXISTING HEP EXPERTISE/GOALS

Link to CF7 Report: <u>https://www.dropbox.com/s/7aaxxImtcjvxyqb/CF7-report.pdf?dI=0</u>

Feedback form:

https://forms.gle/kKuWWPgRaohQ8YqN7

CONCLUSION:

Great Opportunities for Discoveries

- Several Science Objectives from Multi-Messenger Probes (EM, UHECR, GW)
- Cosmic Probes of Dark Matter: Particle, wave, or modified gravity