public class SingularValueDecomposition extends Object implements Serializable
For an m-by-n matrix A with m >= n, the singular value decomposition is an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and an n-by-n orthogonal matrix V so that A = U*S*V'.
The singular values, sigma[k] = S[k][k], are ordered so that sigma[0] >= sigma[1] >= ... >= sigma[n-1].
The singular value decompostion always exists, so the constructor will never fail. The matrix condition number and the effective numerical rank can be computed from this decomposition.
Constructor and Description |
---|
SingularValueDecomposition(Matrix Arg)
Construct the singular value decomposition
Structure to access U, S and V.
|
Modifier and Type | Method and Description |
---|---|
double |
cond()
Two norm condition number
|
Matrix |
getS()
Return the diagonal matrix of singular values
|
double[] |
getSingularValues()
Return the one-dimensional array of singular values
|
Matrix |
getU()
Return the left singular vectors
|
Matrix |
getV()
Return the right singular vectors
|
double |
norm2()
Two norm
|
int |
rank()
Effective numerical matrix rank
|
public SingularValueDecomposition(Matrix Arg)
Arg
- Rectangular matrixpublic Matrix getU()
public Matrix getV()
public double[] getSingularValues()
public Matrix getS()
public double norm2()
public double cond()
public int rank()
Jas4pp 1.5 © Java Analysis Studio for Particle Physics