public class Property extends PersistentObject
Except where explicitly indicated, all methods involving equality tests (==) allow for numerical instability, to a degree specified upon instance construction and returned by method tolerance()
.
The public static final variable DEFAULT represents a default Property object with a tolerance of 1.0E-9.
The public static final variable ZERO represents a Property object with a tolerance of 0.0.
The public static final variable TWELVE represents a Property object with a tolerance of 1.0E-12.
As long as you are happy with these tolerances, there is no need to construct Property objects.
Simply use idioms like Property.DEFAULT.equals(A,B), Property.ZERO.equals(A,B), Property.TWELVE.equals(A,B).
To work with a different tolerance (e.g. 1.0E-15 or 1.0E-5) use the constructor and/or method setTolerance(double)
.
Note that the public static final Property objects are immutable: Is is not possible to alter their tolerance.
Any attempt to do so will throw an Exception.
Note that this implementation is not synchronized.
Example: equals(DoubleMatrix2D A, DoubleMatrix2D B) is defined as follows
{ some other tests not related to tolerance go here } double epsilon = tolerance(); for (int row=rows; --row >= 0;) { for (int column=columns; --column >= 0;) { //if (!(A.getQuick(row,column) == B.getQuick(row,column))) return false; if (Math.abs(A.getQuick(row,column) - B.getQuick(row,column)) > epsilon) return false; } } return true; |
matrix | 4 x 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
4 x 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 |
4 x 4 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 |
4 x 4 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 |
4 x 4 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 |
4 x 4 1 1 0 0 0 1 1 0 0 1 0 1 1 0 1 1 |
4 x 4 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1 |
upperBandwidth |
0
|
0
|
1
|
3 | 0 |
1
|
2
|
lowerBandwidth |
0
|
0
|
1
|
0 | 3 |
3
|
2
|
semiBandwidth |
1
|
1
|
2
|
4 | 4 |
4
|
3
|
description |
zero
|
diagonal
|
tridiagonal
|
upper triangular | lower triangular |
unstructured
|
unstructured
|
Modifier and Type | Field and Description |
---|---|
static Property |
DEFAULT
The default Property object; currently has tolerance()==1.0E-9.
|
static Property |
TWELVE
A Property object with tolerance()==1.0E-12.
|
static Property |
ZERO
A Property object with tolerance()==0.0.
|
serialVersionUID
Constructor and Description |
---|
Property(double newTolerance)
Constructs an instance with a tolerance of Math.abs(newTolerance).
|
Modifier and Type | Method and Description |
---|---|
void |
checkRectangular(DoubleMatrix2D A)
Checks whether the given matrix A is rectangular.
|
void |
checkSquare(DoubleMatrix2D A)
Checks whether the given matrix A is square.
|
double |
density(DoubleMatrix2D A)
Returns the matrix's fraction of non-zero cells; A.cardinality() / A.size().
|
boolean |
equals(DoubleMatrix1D A,
double value)
Returns whether all cells of the given matrix A are equal to the given value.
|
boolean |
equals(DoubleMatrix1D A,
DoubleMatrix1D B)
Returns whether both given matrices A and B are equal.
|
boolean |
equals(DoubleMatrix2D A,
double value)
Returns whether all cells of the given matrix A are equal to the given value.
|
boolean |
equals(DoubleMatrix2D A,
DoubleMatrix2D B)
Returns whether both given matrices A and B are equal.
|
boolean |
equals(DoubleMatrix3D A,
double value)
Returns whether all cells of the given matrix A are equal to the given value.
|
boolean |
equals(DoubleMatrix3D A,
DoubleMatrix3D B)
Returns whether both given matrices A and B are equal.
|
void |
generateNonSingular(DoubleMatrix2D A)
Modifies the given matrix square matrix A such that it is diagonally dominant by row and column, hence non-singular, hence invertible.
|
boolean |
isDiagonal(DoubleMatrix2D A)
A matrix A is diagonal if A[i,j] == 0 whenever i != j.
|
boolean |
isDiagonallyDominantByColumn(DoubleMatrix2D A)
A matrix A is diagonally dominant by column if the absolute value of each diagonal element is larger than the sum of the absolute values of the off-diagonal elements in the corresponding column.
|
boolean |
isDiagonallyDominantByRow(DoubleMatrix2D A)
A matrix A is diagonally dominant by row if the absolute value of each diagonal element is larger than the sum of the absolute values of the off-diagonal elements in the corresponding row.
|
boolean |
isIdentity(DoubleMatrix2D A)
A matrix A is an identity matrix if A[i,i] == 1 and all other cells are zero.
|
boolean |
isLowerBidiagonal(DoubleMatrix2D A)
A matrix A is lower bidiagonal if A[i,j]==0 unless i==j || i==j+1.
|
boolean |
isLowerTriangular(DoubleMatrix2D A)
A matrix A is lower triangular if A[i,j]==0 whenever i < j.
|
boolean |
isNonNegative(DoubleMatrix2D A)
A matrix A is non-negative if A[i,j] >= 0 holds for all cells.
|
boolean |
isOrthogonal(DoubleMatrix2D A)
A square matrix A is orthogonal if A*transpose(A) = I.
|
boolean |
isPositive(DoubleMatrix2D A)
A matrix A is positive if A[i,j] > 0 holds for all cells.
|
boolean |
isSingular(DoubleMatrix2D A)
A matrix A is singular if it has no inverse, that is, iff det(A)==0.
|
boolean |
isSkewSymmetric(DoubleMatrix2D A)
A square matrix A is skew-symmetric if A = -transpose(A), that is A[i,j] == -A[j,i].
|
boolean |
isSquare(DoubleMatrix2D A)
A matrix A is square if it has the same number of rows and columns.
|
boolean |
isStrictlyLowerTriangular(DoubleMatrix2D A)
A matrix A is strictly lower triangular if A[i,j]==0 whenever i <= j.
|
boolean |
isStrictlyTriangular(DoubleMatrix2D A)
A matrix A is strictly triangular if it is triangular and its diagonal elements all equal 0.
|
boolean |
isStrictlyUpperTriangular(DoubleMatrix2D A)
A matrix A is strictly upper triangular if A[i,j]==0 whenever i >= j.
|
boolean |
isSymmetric(DoubleMatrix2D A)
A matrix A is symmetric if A = tranpose(A), that is A[i,j] == A[j,i].
|
boolean |
isTriangular(DoubleMatrix2D A)
A matrix A is triangular iff it is either upper or lower triangular.
|
boolean |
isTridiagonal(DoubleMatrix2D A)
A matrix A is tridiagonal if A[i,j]==0 whenever Math.abs(i-j) > 1.
|
boolean |
isUnitTriangular(DoubleMatrix2D A)
A matrix A is unit triangular if it is triangular and its diagonal elements all equal 1.
|
boolean |
isUpperBidiagonal(DoubleMatrix2D A)
A matrix A is upper bidiagonal if A[i,j]==0 unless i==j || i==j-1.
|
boolean |
isUpperTriangular(DoubleMatrix2D A)
A matrix A is upper triangular if A[i,j]==0 whenever i > j.
|
boolean |
isZero(DoubleMatrix2D A)
A matrix A is zero if all its cells are zero.
|
int |
lowerBandwidth(DoubleMatrix2D A)
The lower bandwidth of a square matrix A is the maximum i-j for which A[i,j] is nonzero and i > j.
|
int |
semiBandwidth(DoubleMatrix2D A)
Returns the semi-bandwidth of the given square matrix A.
|
void |
setTolerance(double newTolerance)
Sets the tolerance to Math.abs(newTolerance).
|
double |
tolerance()
Returns the current tolerance.
|
String |
toString(DoubleMatrix2D A)
Returns summary information about the given matrix A.
|
int |
upperBandwidth(DoubleMatrix2D A)
The upper bandwidth of a square matrix A is the
maximum j-i for which A[i,j] is nonzero and j > i.
|
clone
public static final Property DEFAULT
public static final Property ZERO
public static final Property TWELVE
public Property(double newTolerance)
public void checkRectangular(DoubleMatrix2D A)
IllegalArgumentException
- if A.rows() < A.columns().public void checkSquare(DoubleMatrix2D A)
IllegalArgumentException
- if A.rows() != A.columns().public double density(DoubleMatrix2D A)
public boolean equals(DoubleMatrix1D A, double value)
A
- the first matrix to compare.value
- the value to compare against.public boolean equals(DoubleMatrix1D A, DoubleMatrix1D B)
A
- the first matrix to compare.B
- the second matrix to compare.public boolean equals(DoubleMatrix2D A, double value)
A
- the first matrix to compare.value
- the value to compare against.public boolean equals(DoubleMatrix2D A, DoubleMatrix2D B)
A
- the first matrix to compare.B
- the second matrix to compare.public boolean equals(DoubleMatrix3D A, double value)
A
- the first matrix to compare.value
- the value to compare against.public boolean equals(DoubleMatrix3D A, DoubleMatrix3D B)
A
- the first matrix to compare.B
- the second matrix to compare.public void generateNonSingular(DoubleMatrix2D A)
A
- the square matrix to modify.IllegalArgumentException
- if !isSquare(A).public boolean isDiagonal(DoubleMatrix2D A)
public boolean isDiagonallyDominantByColumn(DoubleMatrix2D A)
Note: Ignores tolerance.
public boolean isDiagonallyDominantByRow(DoubleMatrix2D A)
Note: Ignores tolerance.
public boolean isIdentity(DoubleMatrix2D A)
public boolean isLowerBidiagonal(DoubleMatrix2D A)
public boolean isLowerTriangular(DoubleMatrix2D A)
public boolean isNonNegative(DoubleMatrix2D A)
Note: Ignores tolerance.
public boolean isOrthogonal(DoubleMatrix2D A)
IllegalArgumentException
- if !isSquare(A).public boolean isPositive(DoubleMatrix2D A)
Note: Ignores tolerance.
public boolean isSingular(DoubleMatrix2D A)
public boolean isSkewSymmetric(DoubleMatrix2D A)
IllegalArgumentException
- if !isSquare(A).public boolean isSquare(DoubleMatrix2D A)
public boolean isStrictlyLowerTriangular(DoubleMatrix2D A)
public boolean isStrictlyTriangular(DoubleMatrix2D A)
public boolean isStrictlyUpperTriangular(DoubleMatrix2D A)
public boolean isSymmetric(DoubleMatrix2D A)
IllegalArgumentException
- if !isSquare(A).public boolean isTriangular(DoubleMatrix2D A)
public boolean isTridiagonal(DoubleMatrix2D A)
public boolean isUnitTriangular(DoubleMatrix2D A)
public boolean isUpperBidiagonal(DoubleMatrix2D A)
public boolean isUpperTriangular(DoubleMatrix2D A)
public boolean isZero(DoubleMatrix2D A)
public int lowerBandwidth(DoubleMatrix2D A)
A
- the square matrix to analyze.IllegalArgumentException
- if !isSquare(A).semiBandwidth(DoubleMatrix2D)
,
upperBandwidth(DoubleMatrix2D)
public int semiBandwidth(DoubleMatrix2D A)
The upper bandwidth is the maximum j-i for which A[i,j] is nonzero and j > i. The lower bandwidth is the maximum i-j for which A[i,j] is nonzero and i > j. Diagonal, tridiagonal and triangular matrices are special cases.
Examples:
matrix | 4 x 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
4 x 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 |
4 x 4 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 |
4 x 4 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 |
4 x 4 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 |
4 x 4 1 1 0 0 0 1 1 0 0 1 0 1 1 0 1 1 |
4 x 4 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1 |
upperBandwidth |
0
|
0
|
1
|
3 | 0 |
1
|
2
|
lowerBandwidth |
0
|
0
|
1
|
0 | 3 |
3
|
2
|
semiBandwidth |
1
|
1
|
2
|
4 | 4 |
4
|
3
|
description |
zero
|
diagonal
|
tridiagonal
|
upper triangular | lower triangular |
unstructured
|
unstructured
|
A
- the square matrix to analyze.IllegalArgumentException
- if !isSquare(A).lowerBandwidth(DoubleMatrix2D)
,
upperBandwidth(DoubleMatrix2D)
public void setTolerance(double newTolerance)
UnsupportedOperationException
- if this==DEFAULT || this==ZERO || this==TWELVE.public double tolerance()
public String toString(DoubleMatrix2D A)
density : 0.9 isDiagonal : false isDiagonallyDominantByRow : false isDiagonallyDominantByColumn : false isIdentity : false isLowerBidiagonal : false isLowerTriangular : false isNonNegative : true isOrthogonal : Illegal operation or error: Matrix must be square. isPositive : true isSingular : Illegal operation or error: Matrix must be square. isSkewSymmetric : Illegal operation or error: Matrix must be square. isSquare : false isStrictlyLowerTriangular : false isStrictlyTriangular : false isStrictlyUpperTriangular : false isSymmetric : Illegal operation or error: Matrix must be square. isTriangular : false isTridiagonal : false isUnitTriangular : false isUpperBidiagonal : false isUpperTriangular : false isZero : false lowerBandwidth : Illegal operation or error: Matrix must be square. semiBandwidth : Illegal operation or error: Matrix must be square. upperBandwidth : Illegal operation or error: Matrix must be square.
public int upperBandwidth(DoubleMatrix2D A)
A
- the square matrix to analyze.IllegalArgumentException
- if !isSquare(A).semiBandwidth(DoubleMatrix2D)
,
lowerBandwidth(DoubleMatrix2D)
Jas4pp 1.5 © Java Analysis Studio for Particle Physics