See: Description
Class | Description |
---|---|
AbstractContinousDistribution |
Abstract base class for all continous distributions.
|
AbstractDiscreteDistribution |
Abstract base class for all discrete distributions.
|
AbstractDistribution |
Abstract base class for all random distributions.
|
Benchmark |
Benchmarks random number generation from various distributions as well as PDF and CDF lookups.
|
Beta |
Beta distribution; math definition
and animated definition.
|
Binomial |
Binomial distribution; See the math definition
and animated definition.
|
BreitWigner |
BreitWigner (aka Lorentz) distribution; See the math definition.
|
BreitWignerMeanSquare |
Mean-square BreitWigner distribution; See the math definition.
|
ChiSquare |
ChiSquare distribution; See the math definition
and animated definition.
|
Distributions |
Contains methods for conveniently generating pseudo-random numbers from special distributions such as the Burr, Cauchy, Erlang, Geometric, Lambda, Laplace, Logistic, Weibull, etc.
|
Empirical |
Empirical distribution.
|
EmpiricalWalker |
Discrete Empirical distribution (pdf's can be specified).
|
Exponential |
Exponential Distribution (aka Negative Exponential Distribution); See the math definition
animated definition.
|
ExponentialPower |
Exponential Power distribution.
|
Gamma | |
Hyperbolic |
Hyperbolic distribution.
|
HyperGeometric |
HyperGeometric distribution; See the math definition
The hypergeometric distribution with parameters N, n and s is the probability distribution of the random variable X,
whose value is the number of successes in a sample of n items from a population of size N that has s 'success' items and N - s 'failure' items.
|
Logarithmic |
Logarithmic distribution.
|
NegativeBinomial |
Negative Binomial distribution; See the math definition.
|
Normal |
Normal (aka Gaussian) distribution; See the math definition
and animated definition.
|
Poisson |
Poisson distribution (quick); See the math definition
and animated definition.
|
PoissonSlow |
Poisson distribution; See the math definition
and animated definition.
|
StudentT |
StudentT distribution (aka T-distribution); See the math definition
and animated definition.
|
Uniform |
Uniform distribution; Math definition
and animated definition.
|
VonMises |
Von Mises distribution.
|
Zeta |
Zeta distribution.
|
Large variety of probability distributions featuring high performance generation of random numbers, CDF's and PDF's. You can always do a quick and dirty check to test the properties of any given distribution, for example, as follows:
// Gamma distribution // define distribution parameters double mean = 5; double variance = 1.5; double alpha = mean*mean / variance; double lambda = 1 / (variance / mean); // for tests and debugging use a random engine with CONSTANT seed --> deterministic and reproducible results cern.jet.random.engine.RandomEngine engine = new cern.jet.random.engine.MersenneTwister(); // your favourite distribution goes here cern.jet.random.AbstractDistribution dist = new cern.jet.random.Gamma(alpha,lambda,engine); // collect random numbers and print statistics int size = 100000; cern.colt.list.DoubleArrayList numbers = new cern.colt.list.DoubleArrayList(size); for (int i=0; i < size; i++) numbers.add(dist.nextDouble()); hep.aida.bin.DynamicBin1D bin = new hep.aida.bin.DynamicBin1D(); bin.addAllOf(numbers); System.out.println(bin); Will print something like Size: 100000 Sum: 499830.30147620925 SumOfSquares: 2648064.0189520954 Min: 1.2903021480010035 Max: 12.632626684290546 Mean: 4.998303014762093 RMS: 5.14593433591228 Variance: 1.497622138362513 Standard deviation: 1.2237737284165373 Standard error: 0.0038699123224725817 Geometric mean: 4.849381516061957 Product: Infinity Harmonic mean: 4.69916104903662 Sum of inversions: 21280.394299425236 Skew: 0.49097523334186227 Kurtosis: 0.3461005384481113 Sum of powers(3): 1.4822908764628284E7 Sum of powers(4): 8.741360251658581E7 Sum of powers(5): 5.41658186456702E8 Sum of powers(6): 3.5183920126086535E9 Moment(0,0): 1.0 Moment(1,0): 4.998303014762093 Moment(2,0): 26.480640189520955 Moment(3,0): 148.22908764628284 Moment(4,0): 874.1360251658581 Moment(5,0): 5416.58186456702 Moment(6,0): 35183.92012608654 Moment(0,mean()): 1.0 Moment(1,mean()): 3.7017002796346785E-14 Moment(2,mean()): 1.4976071621409774 Moment(3,mean()): 0.8998351672510565 Moment(4,mean()): 7.50487543880015 Moment(5,mean()): 14.413483695698101 Moment(6,mean()): 77.72119325586715 25%, 50%, 75% Quantiles: 4.122365795016783, 4.897730017566362, 5.763097174551738 quantileInverse(median): 0.500005 Distinct elements & frequencies not printed (too many). |
Jas4pp 1.5 © Java Analysis Studio for Particle Physics