public class StatisticSample extends Object
Constructor and Description |
---|
StatisticSample() |
Modifier and Type | Method and Description |
---|---|
static double[][] |
correlation(double[][] v)
Correlation
|
static double[][] |
correlation(double[][] v1,
double[][] v2)
Correlation coefficient,
covariance(v1, v2) / Math.sqrt(variance(v1) * variance(v2)
|
static double |
correlation(double[] v1,
double[] v2)
Correlation coefficient,
covariance(v1, v2) / Math.sqrt(variance(v1) * variance(v2)
|
static double[][] |
covariance(double[][] v)
Covariance
|
static double[][] |
covariance(double[][] v1,
double[][] v2)
Covariance
|
static double |
covariance(double[] v1,
double[] v2)
Covariance
|
static double |
mean(double[] v)
Get mean value
|
static double[] |
mean(double[][] v)
Get mean
|
static double[] |
randomBeta(int m,
double a,
double b)
1D Random Beta distribution
|
static double[][] |
randomBeta(int m,
int n,
double a,
double b)
Random beata distribution
|
static double[] |
randomCauchy(int m,
double mu,
double sigma)
1D Cauchy PDF
|
static double[][] |
randomCauchy(int m,
int n,
double mu,
double sigma)
2D Cauchy PDF
|
static double[] |
randomChi2(int m,
int d)
1D array with random numbers
|
static double[][] |
randomChi2(int m,
int n,
int d)
2D array with Chi2
|
static double[] |
randomDirac(int m,
double[] values,
double[] prob)
1D array with Dirac random values
|
static double[][] |
randomDirac(int m,
int n,
double[] values,
double[] prob)
2D array with Dirac random values
|
double[][] |
randomDoubleArray(int rows,
int columns,
AbstractDistribution dist)
Build 2D integer array list with integer numbers from input random number
generator
|
DoubleArrayList |
randomDoubleArrayList(int Ntot,
AbstractDistribution dist)
Build double array list with integer numbers from input random number
generator
|
static double[] |
randomExponential(int m,
double lambda)
1D array with exponential numbers
|
static double[][] |
randomExponential(int m,
int n,
double lambda)
2D array with exponential random distribution
|
static int[] |
randomInt(int m,
int i0,
int i1)
Random array with integers
|
static int[][] |
randomInt(int m,
int n,
int i0,
int i1)
Random 2D array with integers
|
int[] |
randomIntArray(int Ntot,
Binomial dist)
Build integer array list with integer numbers from input random number
generator
|
int[][] |
randomIntArray(int rows,
int columns,
AbstractDistribution dist)
Build 2D integer array list with integer numbers from input random number
generator
|
IntArrayList |
randomIntArrayList(int Ntot,
AbstractDistribution dist)
Build integer array list with integer numbers from input random number
generator
|
static double[] |
randomLogNormal(int m,
double mu,
double sigma)
1D array with random Log-normal values
|
static double[][] |
randomLogNormal(int m,
int n,
double mu,
double sigma)
2D Log-normal distribution
|
static double[] |
randomNormal(int m,
double mu,
double sigma)
1D array with Gaussian numbers
|
static double[][] |
randomNormal(int m,
int n,
double mu,
double sigma)
2D array with Gaussian numbers
|
static int[] |
randomPoisson(int m,
double mean)
Build an array with Poisson distribution
|
static double[] |
randomRejection(int m,
Expression fun,
double maxFun,
double min,
double max)
Build 1D array using analytic function.
|
static double[][] |
randomRejection(int m,
int n,
Expression fun,
double maxFun,
double min,
double max)
Build 2D random array using analytic function.
|
static double[] |
randomTriangular(int m,
double min,
double max)
1D array with Triangular random PDF
|
static double[] |
randomTriangular(int m,
double min,
double med,
double max)
1D array for Triangular
|
static double[][] |
randomTriangular(int m,
int n,
double min,
double max)
2D array for Triangular random PDF
|
static double[][] |
randomTriangular(int m,
int n,
double min,
double med,
double max)
2D array for Triangular
|
static double[] |
randomWeibull(int m,
double lambda,
double c)
1D Weibull
|
static double[][] |
randomWeibull(int m,
int n,
double lambda,
double c)
2D Weibull
|
static double[] |
randUniform(int m,
double min,
double max)
2D array with uniform values
|
static double[][] |
randUniform(int m,
int n,
double min,
double max)
2D array with random uniform values
|
static double |
stddeviation(double[] v)
Standard deviation
|
static double[] |
stddeviation(double[][] v)
Standard deviation
|
static double |
variance(double[] v)
Variance
|
static double[] |
variance(double[][] v)
Variance
|
public static int[][] randomInt(int m, int n, int i0, int i1)
m
- Rowsn
- Columnsi0
- Min valuei1
- max valuepublic static int[] randomInt(int m, int i0, int i1)
m
- array sizei0
- min valuei1
- max valuepublic static double[] randUniform(int m, double min, double max)
m
- Total numbermin
- Min valuemax
- Max valuepublic static double[][] randUniform(int m, int n, double min, double max)
m
- Rowsn
- Columnsmin
- Min valuemax
- Max valuepublic static double[][] randomDirac(int m, int n, double[] values, double[] prob)
m
- Rowsn
- Columnsvalues
- Values for functionprob
- Probabilitiespublic static double[] randomDirac(int m, double[] values, double[] prob)
m
- Total numbervalues
- array with values for the functionprob
- probabilitypublic static int[] randomPoisson(int m, double mean)
mean
- mean of Poisson distributionpublic static double[][] randomNormal(int m, int n, double mu, double sigma)
m
- Rowsn
- Columnsmu
- meansigma
- standard deviationpublic static double[] randomNormal(int m, double mu, double sigma)
m
- Total numbermu
- meansigma
- standard deviationpublic static double[][] randomChi2(int m, int n, int d)
m
- Rowsn
- Columnsd
- degrees of freedompublic static double[] randomChi2(int m, int d)
m
- Total numberd
- degree of freedomspublic static double[][] randomLogNormal(int m, int n, double mu, double sigma)
m
- Rowsn
- Columnsmu
- meansigma
- sigmapublic static double[] randomLogNormal(int m, double mu, double sigma)
m
- total numbermu
- meansigma
- sigmapublic static double[][] randomExponential(int m, int n, double lambda)
m
- Rowsn
- Columslambda
- lambdapublic static double[] randomExponential(int m, double lambda)
m
- total numberslambda
- lambdapublic static double[][] randomTriangular(int m, int n, double min, double max)
m
- Rowsn
- Columnsmin
- Minmax
- maxpublic static double[] randomTriangular(int m, double min, double max)
m
- total numbermin
- Minmax
- maxpublic static double[][] randomTriangular(int m, int n, double min, double med, double max)
m
- Rowsn
- Columnsmin
- Minmed
- Medianmax
- Maxpublic static double[] randomTriangular(int m, double min, double med, double max)
m
- total numbermin
- Minmed
- Medianmax
- Maxpublic static double[][] randomBeta(int m, int n, double a, double b)
m
- Rowsn
- Columnsa
- alphab
- betapublic static double[] randomBeta(int m, double a, double b)
m
- total numbera
- alphab
- betapublic static double[][] randomCauchy(int m, int n, double mu, double sigma)
m
- Rowsn
- Columsmu
- Meansigma
- Sigmapublic static double[] randomCauchy(int m, double mu, double sigma)
m
- total numbermu
- meansigma
- sigmapublic static double[][] randomWeibull(int m, int n, double lambda, double c)
m
- Rowsn
- Columnslambda
- lambdac
- Cpublic static double[] randomWeibull(int m, double lambda, double c)
m
- Rowslambda
- lambdac
- Cpublic static double[][] randomRejection(int m, int n, Expression fun, double maxFun, double min, double max)
m
- Number of pointsfun
- ParseFunction (get it as getParse() for F1D)maxFun
- max of the functionmin
- Min value in Xmax
- Max value in Xpublic static double[] randomRejection(int m, Expression fun, double maxFun, double min, double max)
m
- Number of pointsfun
- ParseFunction (get it as getParse() for F1D)maxFun
- max of the functionmin
- Min value in Xmax
- Max value in Xpublic static double mean(double[] v)
v
- vectorpublic static double[] mean(double[][] v)
v
- 2D arraypublic static double stddeviation(double[] v)
v
- vectorpublic static double variance(double[] v)
v
- public static double[] stddeviation(double[][] v)
v
- public static double[] variance(double[][] v)
v
- vectorpublic static double covariance(double[] v1, double[] v2)
v1
- first vectorv2
- second vectorpublic static double[][] covariance(double[][] v1, double[][] v2)
v1
- first 2D arrayv2
- second 2D arraypublic static double[][] covariance(double[][] v)
v
- public static double correlation(double[] v1, double[] v2)
v1
- first vectorv2
- second vectorpublic static double[][] correlation(double[][] v1, double[][] v2)
v1
- first vectorv2
- second vectorpublic static double[][] correlation(double[][] v)
v
- public IntArrayList randomIntArrayList(int Ntot, AbstractDistribution dist)
Ntot
- total numbersdist
- input random number distributionpublic int[] randomIntArray(int Ntot, Binomial dist)
Ntot
- total numbersdist
- input random number distributionpublic int[][] randomIntArray(int rows, int columns, AbstractDistribution dist)
rows
- rowscolums
- columnsdist
- input random number distributionpublic double[][] randomDoubleArray(int rows, int columns, AbstractDistribution dist)
rows
- rowscolums
- columnsdist
- input random number distributionpublic DoubleArrayList randomDoubleArrayList(int Ntot, AbstractDistribution dist)
Ntot
- dist
- Jas4pp 1.5 © Java Analysis Studio for Particle Physics