public class Matrix extends Object implements Cloneable, Serializable
The Java Matrix Class provides the fundamental operations of numerical linear algebra. Various constructors create Matrices from two dimensional arrays of double precision floating point numbers. Various "gets" and "sets" provide access to submatrices and matrix elements. Several methods implement basic matrix arithmetic, including matrix addition and multiplication, matrix norms, and element-by-element array operations. Methods for reading and printing matrices are also included. All the operations in this version of the Matrix Class involve real matrices. Complex matrices may be handled in a future version.
Five fundamental matrix decompositions, which consist of pairs or triples of matrices, permutation vectors, and the like, produce results in five decomposition classes. These decompositions are accessed by the Matrix class to compute solutions of simultaneous linear equations, determinants, inverses and other matrix functions. The five decompositions are:
double[][] vals = {{1.,2.,3},{4.,5.,6.},{7.,8.,10.}}; Matrix A = new Matrix(vals); Matrix b = Matrix.random(3,1); Matrix x = A.solve(b); Matrix r = A.times(x).minus(b); double rnorm = r.normInf();
Constructor and Description |
---|
Matrix(double[][] A)
Construct a matrix from a 2-D array.
|
Matrix(double[][] A,
int m,
int n)
Construct a matrix quickly without checking arguments.
|
Matrix(double[] vals,
int m)
Construct a matrix from a one-dimensional packed array
|
Matrix(int m,
int n)
Construct an m-by-n matrix of zeros.
|
Matrix(int m,
int n,
double s)
Construct an m-by-n constant matrix.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
arrayLeftDivide(Matrix B)
Element-by-element left division, C = A.\B
|
Matrix |
arrayLeftDivideEquals(Matrix B)
Element-by-element left division in place, A = A.\B
|
Matrix |
arrayRightDivide(Matrix B)
Element-by-element right division, C = A./B
|
Matrix |
arrayRightDivideEquals(Matrix B)
Element-by-element right division in place, A = A./B
|
Matrix |
arrayTimes(Matrix B)
Element-by-element multiplication, C = A.*B
|
Matrix |
arrayTimesEquals(Matrix B)
Element-by-element multiplication in place, A = A.*B
|
Object |
clone()
Clone the Matrix object.
|
static Matrix |
constructWithCopy(double[][] A)
Construct a matrix from a copy of a 2-D array.
|
Matrix |
copy()
Make a deep copy of a matrix
|
double |
det()
Matrix determinant
|
Matrix |
gemm(Matrix B,
Matrix C,
double alpha,
double beta)
Generalized linear algebraic matrix-matrix multiplication (of A);
C = alpha*A x B + beta*C.
|
double |
get(int i,
int j)
Get a single element.
|
double[][] |
getArray()
Access the internal two-dimensional array.
|
double[][] |
getArrayCopy()
Copy the internal two-dimensional array.
|
int |
getColumnDimension()
Get column dimension.
|
double[] |
getColumnPackedCopy()
Make a one-dimensional column packed copy of the internal array.
|
Matrix |
getMatrix(int[] r,
int[] c)
Get a submatrix.
|
Matrix |
getMatrix(int[] r,
int j0,
int j1)
Get a submatrix.
|
Matrix |
getMatrix(int i0,
int i1,
int[] c)
Get a submatrix.
|
Matrix |
getMatrix(int i0,
int i1,
int j0,
int j1)
Get a submatrix.
|
int |
getRowDimension()
Get row dimension.
|
double[] |
getRowPackedCopy()
Make a one-dimensional row packed copy of the internal array.
|
Matrix |
identity()
Generate identity matrix
|
static Matrix |
identity(int m,
int n)
Generate identity matrix
|
static Matrix |
identity(int m,
int n,
double value)
Generate identity matrix
|
Matrix |
inverse()
Matrix inverse or pseudoinverse
|
Matrix |
minus(Matrix B)
C = A - B
|
Matrix |
minusEquals(Matrix B)
A = A - B
|
double |
norm1()
One norm
|
double |
normF()
Frobenius norm
|
double |
normInf()
Infinity norm
|
Matrix |
plus(Matrix B)
C = A + B
|
Matrix |
plusEquals(Matrix B)
A = A + B
|
void |
print(int w,
int d)
Print the matrix to stdout.
|
void |
print(NumberFormat format,
int width)
Print the matrix to stdout.
|
void |
print(PrintWriter output,
int w,
int d)
Print the matrix to the output stream.
|
void |
print(PrintWriter output,
NumberFormat format,
int width)
Print the matrix to the output stream.
|
QRDecomposition |
qr()
QR Decomposition
|
static Matrix |
random(int m,
int n)
Generate matrix with random elements
|
static Matrix |
read(BufferedReader input)
Read a matrix from a stream.
|
void |
set(int i,
int j,
double s)
Set a single element.
|
void |
setMatrix(int[] r,
int[] c,
Matrix X)
Set a submatrix.
|
void |
setMatrix(int[] r,
int j0,
int j1,
Matrix X)
Set a submatrix.
|
void |
setMatrix(int i0,
int i1,
int[] c,
Matrix X)
Set a submatrix.
|
void |
setMatrix(int i0,
int i1,
int j0,
int j1,
Matrix X)
Set a submatrix.
|
Matrix |
solve(Matrix B)
Solve A*X = B
|
Matrix |
solveTranspose(Matrix B)
Solve X*A = B, which is also A'*X' = B'
|
Matrix |
times(double s)
Multiply a matrix by a scalar, C = s*A
|
Matrix |
times(Matrix B)
Linear algebraic matrix multiplication, A * B
|
Matrix |
timesEquals(double s)
Multiply a matrix by a scalar in place, A = s*A
|
String |
toString()
Overrides the Object
toString() method. |
String |
toString(int w,
int d)
Hybrid toString.
|
double |
trace()
Matrix trace.
|
Matrix |
transpose()
Matrix transpose.
|
Matrix |
uminus()
Unary minus
|
public Matrix(int m, int n)
m
- Number of rows.n
- Number of colums.public Matrix(int m, int n, double s)
m
- Number of rows.n
- Number of colums.s
- Fill the matrix with this scalar value.public Matrix(double[][] A)
A
- Two-dimensional array of doubles.IllegalArgumentException
- All rows must have the same lengthconstructWithCopy(double[][])
public Matrix(double[][] A, int m, int n)
A
- Two-dimensional array of doubles.m
- Number of rows.n
- Number of colums.public Matrix(double[] vals, int m)
vals
- One-dimensional array of doubles, packed by columns (ala Fortran).m
- Number of rows.IllegalArgumentException
- Array length must be a multiple of m.public static Matrix constructWithCopy(double[][] A)
A
- Two-dimensional array of doubles.IllegalArgumentException
- All rows must have the same lengthpublic Matrix copy()
public double[][] getArray()
public double[][] getArrayCopy()
public double[] getColumnPackedCopy()
public double[] getRowPackedCopy()
public int getRowDimension()
public int getColumnDimension()
public double get(int i, int j)
i
- Row index.j
- Column index.ArrayIndexOutOfBoundsException
public Matrix getMatrix(int i0, int i1, int j0, int j1)
i0
- Initial row indexi1
- Final row indexj0
- Initial column indexj1
- Final column indexArrayIndexOutOfBoundsException
- Submatrix indicespublic Matrix getMatrix(int[] r, int[] c)
r
- Array of row indices.c
- Array of column indices.ArrayIndexOutOfBoundsException
- Submatrix indicespublic Matrix getMatrix(int i0, int i1, int[] c)
i0
- Initial row indexi1
- Final row indexc
- Array of column indices.ArrayIndexOutOfBoundsException
- Submatrix indicespublic Matrix getMatrix(int[] r, int j0, int j1)
r
- Array of row indices.i0
- Initial column indexi1
- Final column indexArrayIndexOutOfBoundsException
- Submatrix indicespublic void set(int i, int j, double s)
i
- Row index.j
- Column index.s
- A(i,j).ArrayIndexOutOfBoundsException
public void setMatrix(int i0, int i1, int j0, int j1, Matrix X)
i0
- Initial row indexi1
- Final row indexj0
- Initial column indexj1
- Final column indexX
- A(i0:i1,j0:j1)ArrayIndexOutOfBoundsException
- Submatrix indicespublic void setMatrix(int[] r, int[] c, Matrix X)
r
- Array of row indices.c
- Array of column indices.X
- A(r(:),c(:))ArrayIndexOutOfBoundsException
- Submatrix indicespublic void setMatrix(int[] r, int j0, int j1, Matrix X)
r
- Array of row indices.j0
- Initial column indexj1
- Final column indexX
- A(r(:),j0:j1)ArrayIndexOutOfBoundsException
- Submatrix indicespublic void setMatrix(int i0, int i1, int[] c, Matrix X)
i0
- Initial row indexi1
- Final row indexc
- Array of column indices.X
- A(i0:i1,c(:))ArrayIndexOutOfBoundsException
- Submatrix indicespublic Matrix transpose()
public double norm1()
public double normInf()
public double normF()
public Matrix uminus()
public Matrix plusEquals(Matrix B)
B
- another matrixpublic Matrix minusEquals(Matrix B)
B
- another matrixpublic Matrix arrayTimes(Matrix B)
B
- another matrixpublic Matrix arrayTimesEquals(Matrix B)
B
- another matrixpublic Matrix arrayRightDivide(Matrix B)
B
- another matrixpublic Matrix arrayRightDivideEquals(Matrix B)
B
- another matrixpublic Matrix arrayLeftDivide(Matrix B)
B
- another matrixpublic Matrix arrayLeftDivideEquals(Matrix B)
B
- another matrixpublic Matrix times(double s)
s
- scalarpublic Matrix timesEquals(double s)
s
- scalarpublic Matrix times(Matrix B)
B
- another matrixIllegalArgumentException
- Matrix inner dimensions must agree.public QRDecomposition qr()
QRDecomposition
public Matrix solve(Matrix B)
B
- right hand sidepublic Matrix solveTranspose(Matrix B)
B
- right hand sidepublic Matrix inverse()
public double det()
public double trace()
public static Matrix random(int m, int n)
m
- Number of rows.n
- Number of colums.public static Matrix identity(int m, int n)
m
- Number of rows.n
- Number of colums.public void print(int w, int d)
w
- Column width.d
- Number of digits after the decimal.public void print(PrintWriter output, int w, int d)
output
- Output stream.w
- Column width.d
- Number of digits after the decimal.public void print(NumberFormat format, int width)
format
- A Formatting object for individual elements.width
- Field width for each column.DecimalFormat.setDecimalFormatSymbols(java.text.DecimalFormatSymbols)
public void print(PrintWriter output, NumberFormat format, int width)
output
- the output stream.format
- A formatting object to format the matrix elementswidth
- Column width.DecimalFormat.setDecimalFormatSymbols(java.text.DecimalFormatSymbols)
public static Matrix read(BufferedReader input) throws IOException
input
- the input stream.IOException
public Matrix gemm(Matrix B, Matrix C, double alpha, double beta)
Matrix shapes: A(m x n), B(n x p), C(m x p).
After potential transpositions and shape conformance check; C[i,j] = alpha*Sum(A[i,k] * B[k,j]) + beta*C[i,j], k=0..n-1.
Use:
C = A.gemm(B, null, 1, 1); // similar to A.times(B);
C = A.transpose().gemm(B.transpose(), C, 1, -1);
B
- the second source matrix.C
- the matrix where results are to be stored. Set this parameter to
null to indicate that a new result matrix shall be constructed.alpha
- a scale factor.beta
- a result scale factor.IllegalArgumentException
- if B.rows() != A.columns().IllegalArgumentException
- if C.rows() != A.rows() || C.columns() != B.columns().IllegalArgumentException
- if A == C || B == C.public String toString(int w, int d)
print(int w, int d)
public String toString()
toString()
method.public Matrix identity()
public static Matrix identity(int m, int n, double value)
m
- Number of rows.n
- Number of colums.Jas4pp 1.5 © Java Analysis Studio for Particle Physics