T
- the type of the field elementspublic abstract class EmbeddedRungeKuttaFieldIntegrator<T extends RealFieldElement<T>> extends AdaptiveStepsizeFieldIntegrator<T> implements FieldButcherArrayProvider<T>
These methods are embedded explicit Runge-Kutta methods with two sets of coefficients allowing to estimate the error, their Butcher arrays are as follows :
0 | c2 | a21 c3 | a31 a32 ... | ... cs | as1 as2 ... ass-1 |-------------------------- | b1 b2 ... bs-1 bs | b'1 b'2 ... b's-1 b's
In fact, we rather use the array defined by ej = bj - b'j to compute directly the error rather than computing two estimates and then comparing them.
Some methods are qualified as fsal (first same as last) methods. This means the last evaluation of the derivatives in one step is the same as the first in the next step. Then, this evaluation can be reused from one step to the next one and the cost of such a method is really s-1 evaluations despite the method still has s stages. This behaviour is true only for successful steps, if the step is rejected after the error estimation phase, no evaluation is saved. For an fsal method, we have cs = 1 and asi = bi for all i.
Modifier and Type | Method and Description |
---|---|
T |
getMaxGrowth()
Get the maximal growth factor for stepsize control.
|
T |
getMinReduction()
Get the minimal reduction factor for stepsize control.
|
abstract int |
getOrder()
Get the order of the method.
|
T |
getSafety()
Get the safety factor for stepsize control.
|
FieldODEStateAndDerivative<T> |
integrate(FieldExpandableODE<T> equations,
FieldODEState<T> initialState,
T finalTime)
Integrate the differential equations up to the given time.
|
void |
setMaxGrowth(T maxGrowth)
Set the maximal growth factor for stepsize control.
|
void |
setMinReduction(T minReduction)
Set the minimal reduction factor for stepsize control.
|
void |
setSafety(T safety)
Set the safety factor for stepsize control.
|
getMaxStep, getMinStep, initializeStep, setInitialStepSize, setStepSizeControl, setStepSizeControl
addEventHandler, addEventHandler, addStepHandler, clearEventHandlers, clearStepHandlers, computeDerivatives, getCurrentSignedStepsize, getCurrentStepStart, getEvaluations, getEventHandlers, getField, getMaxEvaluations, getName, getStepHandlers, setMaxEvaluations
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getA, getB, getC
public abstract int getOrder()
public T getSafety()
public void setSafety(T safety)
safety
- safety factorpublic FieldODEStateAndDerivative<T> integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime) throws NumberIsTooSmallException, DimensionMismatchException, MaxCountExceededException, NoBracketingException
This method solves an Initial Value Problem (IVP).
Since this method stores some internal state variables made
available in its public interface during integration (FirstOrderFieldIntegrator.getCurrentSignedStepsize()
), it is not thread-safe.
integrate
in interface FirstOrderFieldIntegrator<T extends RealFieldElement<T>>
equations
- differential equations to integrateinitialState
- initial state (time, primary and secondary state vectors)finalTime
- target time for the integration
(can be set to a value smaller than t0
for backward integration)finalTime
if
integration reached its target, but may be different if some FieldEventHandler
stops it at some point.NumberIsTooSmallException
- if integration step is too smallMaxCountExceededException
- if the number of functions evaluations is exceededNoBracketingException
- if the location of an event cannot be bracketedDimensionMismatchException
public T getMinReduction()
public void setMinReduction(T minReduction)
minReduction
- minimal reduction factorpublic T getMaxGrowth()
public void setMaxGrowth(T maxGrowth)
maxGrowth
- maximal growth factorJas4pp 1.5 © Java Analysis Studio for Particle Physics