@Deprecated public abstract class AbstractLeastSquaresOptimizer extends BaseAbstractMultivariateVectorOptimizer<DifferentiableMultivariateVectorFunction> implements DifferentiableMultivariateVectorOptimizer
optimize
and assumes that the rows of that matrix iterate on the model
functions while the columns iterate on the parameters; thus, the numbers
of rows is equal to the dimension of the
Target
while
the number of columns is equal to the dimension of the
InitialGuess
.Modifier and Type | Method and Description |
---|---|
double[][] |
computeCovariances(double[] params,
double threshold)
Deprecated.
Get the covariance matrix of the optimized parameters.
|
double[] |
computeSigma(double[] params,
double covarianceSingularityThreshold)
Deprecated.
Computes an estimate of the standard deviation of the parameters.
|
double |
getChiSquare()
Deprecated.
Get a Chi-Square-like value assuming the N residuals follow N
distinct normal distributions centered on 0 and whose variances are
the reciprocal of the weights.
|
double[][] |
getCovariances()
Deprecated.
As of 3.1. Please use
computeCovariances(double[],double)
instead. |
double[][] |
getCovariances(double threshold)
Deprecated.
As of 3.1. Please use
computeCovariances(double[],double)
instead. |
int |
getJacobianEvaluations()
Deprecated.
|
double |
getRMS()
Deprecated.
Get the Root Mean Square value.
|
RealMatrix |
getWeightSquareRoot()
Deprecated.
Gets the square-root of the weight matrix.
|
double[] |
guessParametersErrors()
Deprecated.
as of version 3.1,
computeSigma(double[],double) should be used
instead. It should be emphasized that guessParametersErrors and
computeSigma are not strictly equivalent. |
PointVectorValuePair |
optimize(int maxEval,
DifferentiableMultivariateVectorFunction f,
double[] target,
double[] weights,
double[] startPoint)
Deprecated.
As of 3.1. Please use
optimize(int,MultivariateDifferentiableVectorFunction,OptimizationData...)
instead. |
PointVectorValuePair |
optimize(int maxEval,
MultivariateDifferentiableVectorFunction f,
double[] target,
double[] weights,
double[] startPoint)
Deprecated.
As of 3.1. Please use
optimize(int,MultivariateDifferentiableVectorFunction,OptimizationData...)
instead. |
getConvergenceChecker, getEvaluations, getMaxEvaluations, getStartPoint, getTarget, getWeight
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getConvergenceChecker, getEvaluations, getMaxEvaluations
public int getJacobianEvaluations()
public double getRMS()
public double getChiSquare()
public RealMatrix getWeightSquareRoot()
@Deprecated public double[][] getCovariances()
computeCovariances(double[],double)
instead.SingularMatrixException
- if the covariance matrix cannot be computed (singular problem).getCovariances(double)
@Deprecated public double[][] getCovariances(double threshold)
computeCovariances(double[],double)
instead.JTJ
matrix, where J
is the
Jacobian matrix.
The threshold
parameter is a way for the caller to specify
that the result of this computation should be considered meaningless,
and thus trigger an exception.threshold
- Singularity threshold.SingularMatrixException
- if the covariance matrix cannot be computed (singular problem).public double[][] computeCovariances(double[] params, double threshold)
JTJ
matrix, where J
is the
Jacobian matrix.
The threshold
parameter is a way for the caller to specify
that the result of this computation should be considered meaningless,
and thus trigger an exception.params
- Model parameters.threshold
- Singularity threshold.SingularMatrixException
- if the covariance matrix cannot be computed (singular problem).@Deprecated public double[] guessParametersErrors()
computeSigma(double[],double)
should be used
instead. It should be emphasized that guessParametersErrors
and
computeSigma
are not strictly equivalent.
Returns an estimate of the standard deviation of each parameter. The
returned values are the so-called (asymptotic) standard errors on the
parameters, defined as sd(a[i]) = sqrt(S / (n - m) * C[i][i])
,
where a[i]
is the optimized value of the i
-th parameter,
S
is the minimized value of the sum of squares objective function
(as returned by getChiSquare()
), n
is the number of
observations, m
is the number of parameters and C
is the
covariance matrix.
See also Wikipedia, or MathWorld, equations (34) and (35) for a particular case.
SingularMatrixException
- if the covariance matrix cannot be computed.NumberIsTooSmallException
- if the number of degrees of freedom is not
positive, i.e. the number of measurements is less or equal to the number of
parameters.public double[] computeSigma(double[] params, double covarianceSingularityThreshold)
sd(a[i]) ~= sqrt(C[i][i])
, where a[i]
is the optimized value of the i
-th parameter, and C
is
the covariance matrix.params
- Model parameters.covarianceSingularityThreshold
- Singularity threshold (see
computeCovariances
).SingularMatrixException
- if the covariance matrix cannot be computed.@Deprecated public PointVectorValuePair optimize(int maxEval, DifferentiableMultivariateVectorFunction f, double[] target, double[] weights, double[] startPoint)
optimize(int,MultivariateDifferentiableVectorFunction,OptimizationData...)
instead.∑weighti(objectivei - targeti)2
optimize
in interface BaseMultivariateVectorOptimizer<DifferentiableMultivariateVectorFunction>
optimize
in class BaseAbstractMultivariateVectorOptimizer<DifferentiableMultivariateVectorFunction>
maxEval
- Maximum number of function evaluations.f
- Objective function.target
- Target value for the objective functions at optimum.weights
- Weights for the least squares cost computation.startPoint
- Start point for optimization.@Deprecated public PointVectorValuePair optimize(int maxEval, MultivariateDifferentiableVectorFunction f, double[] target, double[] weights, double[] startPoint)
optimize(int,MultivariateDifferentiableVectorFunction,OptimizationData...)
instead.∑weighti(objectivei - targeti)2
f
- Objective function.target
- Target value for the objective functions at optimum.weights
- Weights for the least squares cost computation.startPoint
- Start point for optimization.maxEval
- Maximum number of function evaluations.DimensionMismatchException
- if the start point dimension is wrong.TooManyEvaluationsException
- if the maximal number of evaluations is exceeded.NullArgumentException
- if
any argument is null
.Jas4pp 1.5 © Java Analysis Studio for Particle Physics