public class Covariance extends Object
The constructors that take RealMatrix
or
double[][]
arguments generate covariance matrices. The
columns of the input matrices are assumed to represent variable values.
The constructor argument biasCorrected
determines whether or
not computed covariances are bias-corrected.
Unbiased covariances are given by the formula
cov(X, Y) = Σ[(xi - E(X))(yi - E(Y))] / (n - 1)
where E(X)
is the mean of X
and E(Y)
is the mean of the Y
values.
Non-bias-corrected estimates use n
in place of n - 1
Constructor and Description |
---|
Covariance()
Create a Covariance with no data
|
Covariance(double[][] data)
Create a Covariance matrix from a rectangular array
whose columns represent covariates.
|
Covariance(double[][] data,
boolean biasCorrected)
Create a Covariance matrix from a rectangular array
whose columns represent covariates.
|
Covariance(RealMatrix matrix)
Create a covariance matrix from a matrix whose columns
represent covariates.
|
Covariance(RealMatrix matrix,
boolean biasCorrected)
Create a covariance matrix from a matrix whose columns
represent covariates.
|
Modifier and Type | Method and Description |
---|---|
double |
covariance(double[] xArray,
double[] yArray)
Computes the covariance between the two arrays, using the bias-corrected
formula.
|
double |
covariance(double[] xArray,
double[] yArray,
boolean biasCorrected)
Computes the covariance between the two arrays.
|
RealMatrix |
getCovarianceMatrix()
Returns the covariance matrix
|
int |
getN()
Returns the number of observations (length of covariate vectors)
|
public Covariance()
public Covariance(double[][] data, boolean biasCorrected) throws MathIllegalArgumentException, NotStrictlyPositiveException
The biasCorrected
parameter determines whether or not
covariance estimates are bias-corrected.
The input array must be rectangular with at least one column and two rows.
data
- rectangular array with columns representing covariatesbiasCorrected
- true means covariances are bias-correctedMathIllegalArgumentException
- if the input data array is not
rectangular with at least two rows and one column.NotStrictlyPositiveException
- if the input data array is not
rectangular with at least one row and one column.public Covariance(double[][] data) throws MathIllegalArgumentException, NotStrictlyPositiveException
The input array must be rectangular with at least one column and two rows
data
- rectangular array with columns representing covariatesMathIllegalArgumentException
- if the input data array is not
rectangular with at least two rows and one column.NotStrictlyPositiveException
- if the input data array is not
rectangular with at least one row and one column.public Covariance(RealMatrix matrix, boolean biasCorrected) throws MathIllegalArgumentException
The biasCorrected
parameter determines whether or not
covariance estimates are bias-corrected.
The matrix must have at least one column and two rows
matrix
- matrix with columns representing covariatesbiasCorrected
- true means covariances are bias-correctedMathIllegalArgumentException
- if the input matrix does not have
at least two rows and one columnpublic Covariance(RealMatrix matrix) throws MathIllegalArgumentException
The matrix must have at least one column and two rows
matrix
- matrix with columns representing covariatesMathIllegalArgumentException
- if the input matrix does not have
at least two rows and one columnpublic RealMatrix getCovarianceMatrix()
public int getN()
public double covariance(double[] xArray, double[] yArray, boolean biasCorrected) throws MathIllegalArgumentException
Array lengths must match and the common length must be at least 2.
xArray
- first data arrayyArray
- second data arraybiasCorrected
- if true, returned value will be bias-correctedMathIllegalArgumentException
- if the arrays lengths do not match or
there is insufficient datapublic double covariance(double[] xArray, double[] yArray) throws MathIllegalArgumentException
Array lengths must match and the common length must be at least 2.
xArray
- first data arrayyArray
- second data arrayMathIllegalArgumentException
- if the arrays lengths do not match or
there is insufficient dataJas4pp 1.5 © Java Analysis Studio for Particle Physics