public abstract class MnApplication extends Object
Modifier and Type | Method and Description |
---|---|
void |
add(String name,
double val)
add const parameter
|
void |
add(String name,
double val,
double err)
add free parameter
|
void |
add(String name,
double val,
double err,
double low,
double up)
add limited parameter
|
boolean |
checkAnalyticalDerivatives() |
MnUserCovariance |
covariance() |
double |
error(int index) |
double |
error(String name) |
double |
errorDef() |
double[] |
errors() |
FCNBase |
fcnbase() |
void |
fix(int index) |
void |
fix(String name) |
int |
index(String name)
convert name into external number of parameter
|
FunctionMinimum |
minimize() |
FunctionMinimum |
minimize(int maxfcn) |
FunctionMinimum |
minimize(int maxfcn,
double toler)
Causes minimization of the FCN and returns the result in form of a FunctionMinimum.
|
String |
name(int index)
convert external number into name of parameter
|
int |
numOfCalls() |
MnUserParameters |
parameters() |
double[] |
params()
access to parameters and errors in column-wise representation
|
MnMachinePrecision |
precision() |
void |
release(int index) |
void |
release(String name) |
void |
removeLimits(int index) |
void |
removeLimits(String name) |
void |
setCheckAnalyticalDerivatives(boolean check)
Minuit does a check of the user gradient at the beginning, if this is not
wanted the set this to "false".
|
void |
setError(int index,
double err) |
void |
setError(String name,
double err) |
void |
setErrorDef(double errorDef)
errorDef() is the error definition of the function.
|
void |
setLimits(int index,
double low,
double up) |
void |
setLimits(String name,
double low,
double up) |
void |
setPrecision(double prec) |
void |
setUseAnalyticalDerivatives(boolean use)
By default if the function to be minimized implements FCNGradientBase then the
analytical gradient provided by the function will be used.
|
void |
setValue(int index,
double val) |
void |
setValue(String name,
double val) |
MnUserParameterState |
state() |
MnStrategy |
strategy() |
boolean |
useAnalyticalDerivaties() |
double |
value(int index) |
double |
value(String name) |
int |
variableParameters() |
public FunctionMinimum minimize()
public FunctionMinimum minimize(int maxfcn)
public FunctionMinimum minimize(int maxfcn, double toler)
maxfcn
- specifies the (approximate) maximum number of function calls after
which the calculation will be stopped even if it has not yet converged.toler
- specifies the required tolerance on the function value at the minimum.
The default tolerance value is 0.1, and the minimization will stop when the
estimated vertical distance to the minimum (EDM) is less than 0:001*tolerance*errorDefpublic MnMachinePrecision precision()
public MnUserParameterState state()
public MnUserParameters parameters()
public MnUserCovariance covariance()
public FCNBase fcnbase()
public MnStrategy strategy()
public int numOfCalls()
public double[] params()
public double[] errors()
public void add(String name, double val, double err)
public void add(String name, double val, double err, double low, double up)
public void add(String name, double val)
public void fix(int index)
public void release(int index)
public void setValue(int index, double val)
public void setError(int index, double err)
public void setLimits(int index, double low, double up)
public void removeLimits(int index)
public double value(int index)
public double error(int index)
public void fix(String name)
public void release(String name)
public void setValue(String name, double val)
public void setError(String name, double err)
public void setLimits(String name, double low, double up)
public void removeLimits(String name)
public void setPrecision(double prec)
public double value(String name)
public double error(String name)
public int index(String name)
public String name(int index)
public int variableParameters()
public void setUseAnalyticalDerivatives(boolean use)
false
to disable this behaviour and force numerical calculation of the gradient.public boolean useAnalyticalDerivaties()
public void setCheckAnalyticalDerivatives(boolean check)
public boolean checkAnalyticalDerivatives()
public void setErrorDef(double errorDef)
public double errorDef()
Jas4pp 1.5 © Java Analysis Studio for Particle Physics