Repository with Monte Carlo simulations for particle physics

  • June 5, 2020: Moving to a new (larger) web storage
  • May 21, 2020: Filtered 2-leptons in multijet QCD
  • Apr, 24, 2020: MG5/Pythia8 samples for KK+radion model
  • Feb 20, 2020: Several samples for dark QCD processes
  • Nov 28, 2019: DOI (Digital Object Identifier) by OSTI DOE (see osti.gov)
  • Apr 15, 2019: Moving to Globus (Petrel)
  • Sep.10 2018: Zprime/DM event samples
  • Mar.15 2018: Charged Higgs event samples
  • Sep,22 2017: Z+Higgs → nunu+XX event samples
  • Sep,15 2017: Higgs → mu+mu- event samples
  • Sep,10 2017: rfull059 tag with improved tracking strategy
  • Aug.25, 2017: rfull300 for the DPF (ATLAS/CMS -like) detector
  • Aug.7, 2017: J/Psi and Upsilon(S1) event samples for ep 45 GeV
  • Jun.29, 2017: rfull058 tag with improved tracking strategy from D.Blyth
  • Jun.20, 2017: rfull057 tag with alternative tracking strategy from D.Blyth
  • Jun.9, 2017: Reprocessing rfull009 - rfull015 tags after correcting timing problem in SLIC. Using modifications for low-memory footprint
  • Jun.9, 2017: Reprocessing rfull009 - rfull015 tags after correcting timing problem in SLIC. Using modifications for low-memory footprint
  • May.16, 2017: Production of rfull056 using SiEIC(v5) detector for EIC
  • Apr.30, 2017: CLIC 3 TeV e+e- samples using Pythia8
  • Apr.20, 2017: Started production of ep 35 GeV samples
  • Apr.13, 2017: New rfull015 with Geant10.3p1 using SiFCC(v7)
  • Apr.3, 2017: rfull054 and rfull055 using SiEIC(v4) detector
  • Feb.3, 2017: CLIC event samples for e+e- at 380 GeV. Link to events
  • Feb.1, 2017: Updated rfull053 using SiEIC(v3) detector including track timing
  • Nov.12, 2016: Production of rfull053 using SiEIC(v3) detector for EIC
  • Nov.2, 2016: Production of rfull101 using SiCEPC(v2) detector for CEPC
  • Nov.2, 2016: Production of Higgs+V for different CM energies (8-100 TeV pp)
  • Oct.31,2016: Production of rfull052 using SiEIC(v2) detector for EIC
  • Oct.14, 2016: Production of rfast005 for FCC-hh (pp 100 TeV) using Delphes-3.3.3
  • Sep.23, 2016: Production of rfull051 using SiEIC(v1) detector for EIC
  • Sep.15, 2016: Z'(5 TeV) to different channels using several SiFCC(v7) geometries
  • Aug.28, 2016: rfull010, rfull011, rfull012and rfull013 for SiFCC(v7) using HCAL cells from 1 to 20 cm
  • Aug.11, 2016: Production of rfull009 for 100 TeV (pp) with SiFCC-hh (v7) detector using new Pandora
  • Aug.9, 2016: OSG grid pack with new (fast) PandoraPFA from J.Marshall
  • Jul.27, 2016: Simulation of SiFCC-hh (v7) detector for 100 TeV (pp) (rfull008)
  • Jul.24, 2016: Inclusive jets (100 TeV pp)  tev100_qcd_pythia8_ptall
  • Jul.13, 2016: Increase in statistics for ttbar+b (13 TeV pp) to 2.1 ab-1 tev13_mg5_ttbar_bjet
  • Jun.20, 2016: Samples with single and double K-long for calorimeter studies. See KL samples
  • May 19, 2016: Creating rfull007 for the SiFCC-hh (v5) detector with coarse HCAL granularity
  • May 19, 2016: Re-processing rfull006 for SiFCC-hh (v4) after fixing endcap.
  • Apr 8, 2016: H+ttbar (MG5) for 13 TeV (pp) (link)
  • Apr 3, 2016: A new tag for fast simulation of 14 TeV (pp) (rfast004)
  • Mar.29, 2016: Simulation of SiFCC-hh (v4) detector for 100 TeV (pp) (rfull006)
  • Mar.26, 2016. All data sources were redirected to OSG due to a problem at ANL
  • Mar.9, 2016: Fast simulation of ttbar+N jet process (pp, 14 TeV, MG5) (link)
  • Mar.4, 2016: Full simulation of SiFCC-hh (v3) detector for 100 TeV (pp) (rfull005)
  • Feb.5, 2016: Single particles for ITK studies (ATLAS phase II upgrade) (link)
  • Feb.1, 2016: Z' with M=10,20,40 TeV decaying to qqbar, ttbar, WW for full simulations (link)
  • Jan.19, 2016: 10 TeV Z' using a full simulation with 40 and 64 HCAL layers (link)
  • Jan.14, 2016: TTbar+N jet process (pp, 14 TeV, MG5) (link)
  • Jan.06, 2016: Heavy Higgs simulation (mu+mu-, 5 TeV) (link)
  • Dec.17, 2015: Full SiD detector simulation of Zprime (10 TeV) to WW (link)
  • Dec.17, 2015: Heavy higgs simulation for pp at 100 TeV (link)
  • Dec.07, 2015: Full SiD detector simulation of Zprime to tautau (link)
  • Nov.25, 2015: Particle gun samples for detector performance studies (pgun)
  • Nov.18, 2015: Simulation of ttbar+bjet at 13,14,100 TeV (mg5_ttbar_bjet)
  • Nov.9, 2015: Full simulation for e+e- (250 GeV) for SiD-CC (rfull002)
  • Nov.6, 2015: Fast simulation of DIS events for EIC (141gev%rfast001)
  • Oct.22, 2015: DIS events at the EIC collider (141 GeV)
  • Oct.16, 2015: Delphes 3.3 fast simulation for ATLAS-like (13tev%rfast002) and CMS-like (13tev%rfast003) detectors. Same for 14 TeV.
  • Oct.16, 2015: b-tagging was corrected for the tag rfast002
  • Oct.15, 2015: Please update hs-toolkit.tgz
  • Oct.9, 2015: Delphes 3.3 simulation of pp events (100 TeV) using the FCC detector (rfast002)
  • Oct.6, 2015: Full simulation. e+e- events (250 GeV) for the SiD detector (rfull001)
  • Sep.27, 2015: Fast simulation. e+e- events (250 GeV) for the ILD detector (rfast001)

Information about the "sidpf1" detector


Name: sidpf1
Title: A combined LHC-like detector for LHC performance studies
Author: S.Chekanov, A.Kotwal, etc.
Status: development
Version: $Id: compact.xml,v3.0 2017/09/09 23:46:56 Sergei Chekanov Exp $
Level: Geant4 simulation and full event reconstruction
Summary: view
3D View:
Calibrations: view
Tracking: view
Last modified: September 05, 2017

Reconstruction tags

Reconstruction tag Tag lists: rfull300

Detector geometry files

HEPREP: sidpf1.heprep
GDML: sidpf1.gdml.gz
JSON: sidpf1.json.gz
LCDD: sidpf1.lcdd
Pandora: sidpf1.pandora

Download of complete detector

Download: sidpf1.zip
Image of sidpf1


This is a LHC-like like detector based on the Silicon Detector concept. It combines best features of the ATLAS and CMS detectors. See arXiv:1309.1057, Snowmass Energy Frontier Simulations, J.Anderson et. al for details. This detector design attempts to be as close as possible to the DPF fast simulations implemented in Delphas program used for Snowmass 2013. The HCAL is about 7.5 lambda, but it has 45 longitudinal layers (unlike ATLAS and CMS). The HCAL cell size is 20 cm x 20 cm (similar to ATLAS and CMS). ECAL has 4x4cm cells, which are smaller than for ATLAS LArg ECAL (5 cm, or 0.025 in eta-phi), but larger than BGO cells of CMS (2.2 cm, or 0.0175 in eta-phi). The detector uses the magnetic field 3.8 T as for CMS, similar to the DPF fast simulations.