HepSim

Repository with Monte Carlo simulations for particle physics

  • June 5, 2020: Moving to a new (larger) web storage
  • May 21, 2020: Filtered 2-leptons in multijet QCD
  • Apr, 24, 2020: MG5/Pythia8 samples for KK+radion model
  • Feb 20, 2020: Several samples for dark QCD processes
  • Nov 28, 2019: DOI (Digital Object Identifier) by OSTI DOE (see osti.gov)
  • Apr 15, 2019: Moving to Globus (Petrel)
  • Sep.10 2018: Zprime/DM event samples
  • Mar.15 2018: Charged Higgs event samples
  • Sep,22 2017: Z+Higgs → nunu+XX event samples
  • Sep,15 2017: Higgs → mu+mu- event samples
  • Sep,10 2017: rfull059 tag with improved tracking strategy
  • Aug.25, 2017: rfull300 for the DPF (ATLAS/CMS -like) detector
  • Aug.7, 2017: J/Psi and Upsilon(S1) event samples for ep 45 GeV
  • Jun.29, 2017: rfull058 tag with improved tracking strategy from D.Blyth
  • Jun.20, 2017: rfull057 tag with alternative tracking strategy from D.Blyth
  • Jun.9, 2017: Reprocessing rfull009 - rfull015 tags after correcting timing problem in SLIC. Using modifications for low-memory footprint
  • Jun.9, 2017: Reprocessing rfull009 - rfull015 tags after correcting timing problem in SLIC. Using modifications for low-memory footprint
  • May.16, 2017: Production of rfull056 using SiEIC(v5) detector for EIC
  • Apr.30, 2017: CLIC 3 TeV e+e- samples using Pythia8
  • Apr.20, 2017: Started production of ep 35 GeV samples
  • Apr.13, 2017: New rfull015 with Geant10.3p1 using SiFCC(v7)
  • Apr.3, 2017: rfull054 and rfull055 using SiEIC(v4) detector
  • Feb.3, 2017: CLIC event samples for e+e- at 380 GeV. Link to events
  • Feb.1, 2017: Updated rfull053 using SiEIC(v3) detector including track timing
  • Nov.12, 2016: Production of rfull053 using SiEIC(v3) detector for EIC
  • Nov.2, 2016: Production of rfull101 using SiCEPC(v2) detector for CEPC
  • Nov.2, 2016: Production of Higgs+V for different CM energies (8-100 TeV pp)
  • Oct.31,2016: Production of rfull052 using SiEIC(v2) detector for EIC
  • Oct.14, 2016: Production of rfast005 for FCC-hh (pp 100 TeV) using Delphes-3.3.3
  • Sep.23, 2016: Production of rfull051 using SiEIC(v1) detector for EIC
  • Sep.15, 2016: Z'(5 TeV) to different channels using several SiFCC(v7) geometries
  • Aug.28, 2016: rfull010, rfull011, rfull012and rfull013 for SiFCC(v7) using HCAL cells from 1 to 20 cm
  • Aug.11, 2016: Production of rfull009 for 100 TeV (pp) with SiFCC-hh (v7) detector using new Pandora
  • Aug.9, 2016: OSG grid pack with new (fast) PandoraPFA from J.Marshall
  • Jul.27, 2016: Simulation of SiFCC-hh (v7) detector for 100 TeV (pp) (rfull008)
  • Jul.24, 2016: Inclusive jets (100 TeV pp)  tev100_qcd_pythia8_ptall
  • Jul.13, 2016: Increase in statistics for ttbar+b (13 TeV pp) to 2.1 ab-1 tev13_mg5_ttbar_bjet
  • Jun.20, 2016: Samples with single and double K-long for calorimeter studies. See KL samples
  • May 19, 2016: Creating rfull007 for the SiFCC-hh (v5) detector with coarse HCAL granularity
  • May 19, 2016: Re-processing rfull006 for SiFCC-hh (v4) after fixing endcap.
  • Apr 8, 2016: H+ttbar (MG5) for 13 TeV (pp) (link)
  • Apr 3, 2016: A new tag for fast simulation of 14 TeV (pp) (rfast004)
  • Mar.29, 2016: Simulation of SiFCC-hh (v4) detector for 100 TeV (pp) (rfull006)
  • Mar.26, 2016. All data sources were redirected to OSG due to a problem at ANL
  • Mar.9, 2016: Fast simulation of ttbar+N jet process (pp, 14 TeV, MG5) (link)
  • Mar.4, 2016: Full simulation of SiFCC-hh (v3) detector for 100 TeV (pp) (rfull005)
  • Feb.5, 2016: Single particles for ITK studies (ATLAS phase II upgrade) (link)
  • Feb.1, 2016: Z' with M=10,20,40 TeV decaying to qqbar, ttbar, WW for full simulations (link)
  • Jan.19, 2016: 10 TeV Z' using a full simulation with 40 and 64 HCAL layers (link)
  • Jan.14, 2016: TTbar+N jet process (pp, 14 TeV, MG5) (link)
  • Jan.06, 2016: Heavy Higgs simulation (mu+mu-, 5 TeV) (link)
  • Dec.17, 2015: Full SiD detector simulation of Zprime (10 TeV) to WW (link)
  • Dec.17, 2015: Heavy higgs simulation for pp at 100 TeV (link)
  • Dec.07, 2015: Full SiD detector simulation of Zprime to tautau (link)
  • Nov.25, 2015: Particle gun samples for detector performance studies (pgun)
  • Nov.18, 2015: Simulation of ttbar+bjet at 13,14,100 TeV (mg5_ttbar_bjet)
  • Nov.9, 2015: Full simulation for e+e- (250 GeV) for SiD-CC (rfull002)
  • Nov.6, 2015: Fast simulation of DIS events for EIC (141gev%rfast001)
  • Oct.22, 2015: DIS events at the EIC collider (141 GeV)
  • Oct.16, 2015: Delphes 3.3 fast simulation for ATLAS-like (13tev%rfast002) and CMS-like (13tev%rfast003) detectors. Same for 14 TeV.
  • Oct.16, 2015: b-tagging was corrected for the tag rfast002
  • Oct.15, 2015: Please update hs-toolkit.tgz
  • Oct.9, 2015: Delphes 3.3 simulation of pp events (100 TeV) using the FCC detector (rfast002)
  • Oct.6, 2015: Full simulation. e+e- events (250 GeV) for the SiD detector (rfull001)
  • Sep.27, 2015: Fast simulation. e+e- events (250 GeV) for the ILD detector (rfast001)

Information about the "sidcc2" detector

Summary


Name: sidcc2
Title: Silicon Detector (version 2) for 250 GeV Circular Collider (sidcc2)
Author: Sergei Chekanov (ANL). Based on Norman Graf and Jeremy McCormick (original sidloi3)
Status: development
Version: $Id: compact.xml,v 1.2 2016/10/26 23:46:56 S.Chekanov Exp $
Level: Geant4 simulation and full event reconstruction
Summary: view
3D View:
GeoManager:
Calibrations: view
Tracking: view
Last modified: October 29, 2019

Reconstruction tags


Reconstruction tag Tag lists: rfull101

Detector geometry files


HEPREP: sidcc2.heprep
GDML: sidcc2.gdml.gz
JSON: sidcc2.json.gz
LCDD: sidcc2.lcdd
Pandora: sidcc2.pandora

Download of complete detector


Download: sidcc2.zip
Image of sidcc2

Comment

The compact format for the Silicon Detector for 250 GeV Circular Collider. Includes global XY segmentation in cal endcaps. "Silicon Detector (version 2) for 250 GeV Circular Collider (sidcc2). Based on SiD LOI sidloi3. It has a reduced magnetic field for the solenoid (from 5 T to 3 T) and and the calorimeter has 35 layers for HCAL barrel and Endcap, instead of 40 and 45 (endcap) layers as for the original SiD proposal. Minimum number of hits per track is 5 (original had 7 hits). Ecal has 4mm cells (vs 3.5 mm for SiD), and muon section has 4cm cells (vs 3cm for SiD). Other detector parameters are the same as for SiD. This detector is described in S.V. Chekanov and M. Demarteau, Conceptual Design Studies for a CEPC Detector. arXiv:1604.01994 (April 7, 2016) http://arxiv.org/abs/1604.01994. A white paper contributed to the IAS Program on High Energy Physics (4-29 Jan, 2016). International Journal of Modern Physics A (IJMPA) Volume No.31, (Oct 2016) Issue No. 33, 1644021-1

         
Back

HEP.ANL.GOV