User Tools

Site Tools


submissions:compf

Submissions to the Snowmass 2021 Proceedings - Computational Frontier

Papers of general interest to this frontier

  • Simone Campana, Alessandro Di Girolamo, Paul Laycock, Zach Marshall, Heidi Schellman, Graeme A Stewart. ”HEP computing collaborations for the challenges of the next decade”, arXiv:2203.07237 [physics.comp-ph] (pdf).
  • Dave Casper, Maria Elena Monzani, Benjamin Nachman, Costas Andreopoulos, Stephen Bailey, Deborah Bard, et al. ”Software and Computing for Small HEP Experiments“, arXiv:2203.07645 [hep-ex] (pdf). (also under EF0, NF0, RF0, CF0)
  • Yonatan Kahn, Maria Elena Monzani, Kimberly J. Palladino, Tyler Anderson, Deborah Bard, et al. ”Modeling, statistics, simulations, and computing needs for direct dark matter detection”, arXiv:2203.07700 [hep-ex] (pdf). (also under CF1)
  • Amy Roberts, Christopher Tunnell, Belina von Krosigk, Tyler Anderson, Jason Brodsky, et al. ”Dark-matter And Neutrino Computation Explored (DANCE) Community Input to Snowmass”, arXiv:2203.08338 [hep-ex] (pdf).
  • Emanuela Barzi, S. James Gates Jr., Roxanne Springer. ”In Search of Excellence and Equity in Physics”, arXiv:2203.10393 [physics.soc-ph] (pdf). (also under EF0, NF0, RF0, CF0, TF0, AF01, IF0, UF0, CommF0)
  • Christopher D. Jones, Kyle Knoepfel, Paolo Calafiura, Charles Leggett, Vakhtang Tsulaia. ”Evolution of HEP Processing Frameworks“, arXiv:2203.14345 [cs.DC] (pdf).
  • Emanuela Barzi, Simonetta liuti, Christine Nattrass, Roxanne Springer. “How Community Agreements Can Improve Climate in Physics”, arXiv:2209.06755 [physics.soc-ph] (pdf). (also under EF0, NF0, RF0, CF0, TF0, AF01, IF0, UF0, CommF0)

CompF01: Experimental algorithm optimization and parallelization

  • Bonnie Fleming, Kyle Knoepfel, Meifeng Lin, Xin Qian, et al. ”DUNE Software and High Performance Computing”, arXiv:2203.06104 [hep-ex] (pdf). (also under NF10)

CompF02: Theoretical calculations and simulation

  • A. Valassi et al., “Challenges in Monte Carlo event generator software for High-Luminosity LHC”, arXiv:2004.13687 [hep-ph ]] (pdf). (also under TF07)
  • HSF Physics Event Generator WG: Efe Yazgan, Josh McFayden, Andrea Valassi, et al. “HL-LHC Computing Review Stage-2, Common Software Projects: Event Generators”, arXiv:2109.14938 [hep-ph] (pdf). (also under TF07)
  • Martha Constantinou, Luigi Del Debbio, Xiangdong Ji, Huey-Wen Lin, Keh-Fei Liu, et al. “Lattice QCD Calculations of Parton Physics”, arXiv:2202.07193 [hep-lat] (pdf). (also under EF06, TF05)
  • Antonio Costantini, Federico De Lillo, Fabio Maltoni, Luca Mantani, Olivier Mattelaer, Richard Ruiz, Xiaoran Zhao. ”Vector boson fusion at multi-TeV muon colliders”, arXiv:2005.10289 [hep-ph] (pdf). (also under EF04, TF07, AF04)
  • Richard Ruiz, Antonio Costantini, Fabio Maltoni, Olivier Mattelaer. ”The Effective Vector Boson Approximation in High-Energy Muon Collisions“, arXiv:2111.02442 [hep-ph] (pdf). (also under EF04, TF07, AF04)
  • Francois Foucart, Pablo Laguna, Geoffrey Lovelace, David Radice, Helvi Witek. ”Numerical relativity for next-generation gravitational-wave probes of fundamental physics”, arXiv:2203.08139 [gr-qc] (pdf). (also under CF07)
  • Sunanda Banerjee, D. N. Brown, David N. Brown, Paolo Calafiura, Jacob Calcutt, Philippe Canal, et al. ”Detector and Beamline Simulation for Next-Generation High Energy Physics Experiments”, arXiv:2203.07614 [hep-ex] (pdf). (also under EF0, NF0, RF0, CF0, IF0)
  • L. Alvarez Ruso, A. M. Ankowski, S. Bacca, A. B. Balantekin, J. Carlson, S. Gardiner, et al. ”Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators”, arXiv:2203.09030 [hep-ph] (pdf). (also under NF06, TF11)
  • S. C. Tognini, P. Canal, T. M. Evans, G. Lima, A. L. Lund, S. R. Johnson, S. Y. Jun, V. R. Pascuzzi, P. K. Romano. ”Celeritas: GPU-accelerated particle transport for detector simulation in High Energy Physics experiments”, arXiv:2203.09467 [physics.data-an] (pdf).
  • Thomas Blum, Peter Boyle, Mattia Bruno, Norman Christ, Felix Erben, et al. ”Discovering new physics in rare kaon decays”, arXiv:2203.10998 [hep-lat] (pdf). (also under RF02, TF05)
  • J. M. Campbell, M. Diefenthaler, T. J. Hobbs, S. Höche, J. Isaacson, F. Kling, et al. ”Event Generators for High-Energy Physics Experiments”, arXiv:2203.11110 [hep-ph] (pdf). (also under EF0, NF0, CF0, TF0)
  • Peter Boyle, Dennis Bollweg, Richard Brower, Norman Christ, Carleton DeTar, et al. ”Lattice QCD and the Computational Frontier”, arXiv:2204.00039 [hep-lat] (pdf). (also under TF05)
  • Fernando Febres Cordero, Andreas von Manteuffel, Tobias Neumann. ”Computational challenges for multi-loop collider phenomenology”, arXiv:2204.04200 [hep-ph] (pdf). (also under TF06)
  • Tie-Jiun Hou, Huey-Wen Lin, Mengshi Yan, C.-P. Yuan. ”Impact of lattice s(x)−sbar(x) data in the CTEQ-TEA global analysis“, arXiv:2204.07944 [hep-ph] (pdf). (also under EF06, TF05)
  • Andreas S. Kronfeld, Tanmoy Bhattacharya, Thomas Blum, Norman H. Christ, Carleton DeTar, William Detmold, Robert Edwards, Anna Hasenfratz, et al. ”Lattice QCD and Particle Physics”, arXiv:2207.07641 [hep-lat] (pdf). (also under EF0, NF06, RF0, CF0, TF05)
  • Peter A. Boyle, Bipasha Chakraborty, Christine T.H. Davies, Thomas DeGrand, Carleton DeTar, Luigi Del Debbio, Aida X. El-Khadra, et al. “A lattice QCD perspective on weak decays of b and c quarks”, arXiv:2205.15373 [hep-lat] (pdf). (also under RF01, TF05)

CompF03: Machine learning

  • G. Kasieczka, B. Nachman, D. Shih, et al. “The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics”, arXiv:2101.08320 [hep-ph] (pdf). (also under EF09, TF07)
  • S.V. Chekanov, W. Hopkins, “Event-based anomaly detection for new physics searches at the LHC using machine learning”, arXiv:2111.12119 [hep-ph] (pdf). (also under EF09)
  • Denis Boyda, Salvatore Calì, Sam Foreman, Lena Funcke, et al. “Applications of Machine Learning to Lattice Quantum Field Theory”. arXiv:2202.05838 [hep-lat] (pdf) . (also under TF05)
  • Alexander Scheinker, Spencer Gessner. ”Adaptive Machine Learning for Time-Varying Systems: Towards 6D Phase Space Diagnostics of Short Intense Charged Particle Beams”, arXiv:2203.04391 [physics.acc-ph] (pdf). (also under AF07)
  • Brett Viren, Jin Huang, Yi Huang, Meifeng Lin, Yihui Ren, Kazuhiro Terao, Dmitrii Torbunov, Haiwang Yu. ”Solving Simulation Systematics in and with AI/ML“, arXiv:2203.06112 [hep-ex] (pdf).
  • Alexander Bogatskiy, Sanmay Ganguly, Thomas Kipf, Risi Kondor, David W. Miller, et al. ”Symmetry Group Equivariant Architectures for Physics”, arXiv:2203.06153 [cs.LG] (pdf).
  • Daniel Diaz, Javier Duarte, Sanmay Ganguly, Raghav Kansal, Samadrita Mukherjee, Brian Sheldon, Si Xie. ”Improving Di-Higgs Sensitivity at Future Colliders in Hadronic Final States with Machine Learning”, arXiv:2203.07353 [hep-ph] (pdf). (also under EF01)
  • Cora Dvorkin, Siddharth Mishra-Sharma, Brian Nord, V. Ashley Villar, Camille Avestruz, et al. ”Machine Learning and Cosmology“, arXiv:2203.08056 [hep-ph] (pdf). (also under CF03)
  • Rainer Bartoldus, Catrin Bernius, David W. Miller. ”Innovations in trigger and data acquisition systems for next-generation physics facilities”, arXiv:2203.07620 [hep-ex] (pdf). (also under IF04, CommF01)
  • Andreas Adelmann, Walter Hopkins, Evangelos Kourlitis, Michael Kagan, Gregor Kasieczka, et al. ”New directions for surrogate models and differentiable programming for High Energy Physics detector simulation”, arXiv:2203.08806 [hep-ph] (pdf).
  • N. Akchurin, J. Damgov, S. Dugad, P. G C, S. Grönroos, K. Lamichhane, J. Martinez, T. Quast, S. Undleeb, A. Whitbeck. ”Deep learning applications for quality control in particle detector construction“, arXiv:2203.08969 [hep-ex] (pdf).
  • Savannah Thais, Paolo Calafiura, Grigorios Chachamis, Gage DeZoort, Javier Duarte, et al. ”Graph Neural Networks in Particle Physics: Implementations, Innovations, and Challenges”, arXiv:2203.12852 [hep-ex] (pdf).
  • Philip Harris, Erik Katsavounidis, William Patrick McCormack, Dylan Rankin, Yongbin Feng, et al. ”Physics Community Needs, Tools, and Resources for Machine Learning”, arXiv:2203.16255 [cs.LG] (pdf). (also under EF0, NF01, CF07, IF04)
  • Gabriele Benelli, Thomas Y. Chen, Javier Duarte, Matthew Feickert, Matthew Graham, Lindsey Gray, et al. “Data Science and Machine Learning in Education”, arXiv:2207.09060 [physics.ed-ph] (pdf). (also under CommF04)
  • Thomas Y. Chen, Biprateep Dey, Aishik Ghosh, Michael Kagan, Brian Nord, Nesar Ramachandra. “Interpretable Uncertainty Quantification in AI for HEP”, arXiv:2208.03284 [hep-ex] (pdf).

CompF04: Storage and data processing resource access; facility and infrastructure R&D

  • Amit Bashyal, Peter Van Gemmeren, Saba Sehrish, Kyle Knoepfel, Suren Byna, Qiao Kang. ”Data Storage for HEP Experiments in the Era of High-Performance Computing”, arXiv:2203.07885 [hep-ex] (pdf).
  • Tom Lehman, Xi Yang, Chin Guok, Frank Wuerthwein, Igor Sfiligoi, et al. ”Data Transfer and Network Services Management for Domain Science Workflows”, arXiv:2203.08280 [cs.NI] (pdf).
  • Kevin Lannon, Paul Brenner, Mike Hildreth, Kenyi Hurtado Anampa, Alan Malta Rodrigues, Kelci Mohrman, Doug Thain, Benjamin Tovar. ”Analysis Cyberinfrastructure: Challenges and Opportunities“, arXiv:2203.08811 [physics.data-an] (pdf).
  • Maria Acosta Flechas, Garhan Attebury, Kenneth Bloom, et al. ”Collaborative Computing Support for Analysis Facilities Exploiting Software as Infrastructure Techniques”, arXiv:2203.10161 [physics.data-an] (pdf).

CompF05: End user analysis

  • Jim Pivarski, Eduardo Rodrigues, Kevin Pedro, Oksana Shadura, Benjamin Krikler, Graeme A. Stewart. ”HL-LHC Computing Review Stage 2, Common Software Projects: Data Science Tools for Analysis”, arXiv:2202.02194 [physics.data-an] (pdf).
  • J. V. Bennett, J. Guilliams, M. Hernandez Villanueva, D. E. Jaffe, P. J. Laycock, A. Panta, C. Serfon, I. Ueda. ”Belle II grid-based user analysis”, arXiv:2203.07564 [hep-ex] (pdf).
  • Harrison B. Prosper, Sezen Sekmen, Gokhan Unel. ”Analysis Description Language: A DSL for HEP Analysis”, arXiv:2203.09886 [hep-ph] (pdf). (also relevant to CompF07)

CompF06: Quantum computing

  • Yannick Meurice, James C. Osborn, Ryo Sakai, Judah Unmuth-Yockey, Simon Catterall, Rolando D. Somma. ”Tensor networks for High Energy Physics”, arXiv:2203.04902 [hep-lat] (pdf). (also under TF10)
  • S. Brooks, K. Brown, F. Méot, A. Nomerotski, S. Peggs, M. Palmer, et al. ”Ion Coulomb Crystals in Storage Rings for Quantum Information Science”, arXiv:2203.06809 [physics.acc-ph] (pdf). (also under TF10, AF01, IF01)
  • Travis S. Humble, Andrea Delgado, Raphael Pooser, Christopher Seck, et al. ”Quantum Computing Systems and Software for High-energy Physics Research“, arXiv:2203.07091 [quant-ph] (pdf).
  • Asher Berlin, Sergey Belomestnykh, Diego Blas, Daniil Frolov, Anthony J. Brady, Caterina Braggio, et al. ”Searches for New Particles, Dark Matter, and Gravitational Waves with SRF Cavities”, arXiv:2203.12714 [hep-ph] (pdf). (also under CF0, TF0, IF01)
  • Andrei Derevianko, Eden Figueroa, Julián MartÍnez-Rincón, Inder Monga, Andrei Nomerotski, et al. ”Quantum Networks for High Energy Physics”, arXiv:2203.16979 [quant-ph] (pdf).
  • Christian W. Bauer, Zohreh Davoudi, A. Baha Balantekin, Tanmoy Bhattacharya, et al. ”Quantum Simulation for High Energy Physics”, arXiv:2204.03381 [quant-ph] (pdf). (also under TF10)
  • M. Sohaib Alam, Sergey Belomestnykh, Nicholas Bornman, Gustavo Cancelo, Yu-Chiu Chao, et al. “Quantum computing hardware for HEP algorithms and sensing”, arXiv:2204.08605 [quant-ph] (pdf). (also under TF10)

CompF07: Reinterpretation and long-term preservation of data and code

  • Stephen Bailey, Christian Bierlich, Andy Buckley, Jon Butterworth, Kyle Cranmer, et al. ”Data and Analysis Preservation, Recasting, and Reinterpretation“, arXiv:2203.10057 [hep-ph] (pdf). (also under TF07)

Back to the index

submissions/compf.txt · Last modified: 2022/09/15 13:14 by mpeskin

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki